Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface

Wert, KJ; Velez, G; Cross, MR; Wagner, BA; Teoh-Fitzgerald, ML; Buettner, GR; Mcanany, JJ; Olivier, A; Tsang, SH; Harper, MM; Domann, FE; Bassuk, AG; Mahajan, VB

HERO ID

6801177

Reference Type

Journal Article

Year

2018

Language

English

PMID

29940351

HERO ID 6801177
In Press No
Year 2018
Title Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface
Authors Wert, KJ; Velez, G; Cross, MR; Wagner, BA; Teoh-Fitzgerald, ML; Buettner, GR; Mcanany, JJ; Olivier, A; Tsang, SH; Harper, MM; Domann, FE; Bassuk, AG; Mahajan, VB
Journal Free Radical Biology and Medicine
Volume 124
Page Numbers 408-419
Abstract Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases.
Doi 10.1016/j.freeradbiomed.2018.06.024
Pmid 29940351
Wosid WOS:000441516300039
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English