Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
10499824
Reference Type
Journal Article
Title
Upregulation of lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals
Author(s)
Zhang, W; Zhang, Y; Xi, S
Year
2019
Journal
Artificial Cells, Nanomedicine, and Biotechnology
ISSN:
2169-1401
EISSN:
2169-141X
Volume
47
Issue
1
Page Numbers
3043-3052
Language
English
PMID
31334669
DOI
10.1080/21691401.2019.1640233
Web of Science Id
WOS:000476899000001
Relationship(s)
has retraction
7336185
Expression of Concern:(Artificial Cells, Nanomedicine, and Biotechnology, (2019), 47, 1, (3043-3052), 10.1080/21691401.2019.1640233)
has retraction
10507790
(Retraction of Vol 47, Pg 3043, 2019)
Abstract
We planned to dig the significant role of long noncoding RNA HAGLROS in nasopharyngeal carcinoma (NPC) and the latent mechanism. The levels of HAGLROS in NPC tissues and cells were determined, followed by correlation analysis of HAGLROS level and clinicopathological features of patients suffered with NPC. The impacts of HAGLROS dysregulation on NPC cell viability, apoptosis, and the expression of apoptotic proteins and autophagy-related symbols were investigated. Moreover, we explored whether HAGLROS modulated the expression of autophagy-related gene 14 (ATG14) by competitively sponging miR-100, and then regulated the briskness of PI3K/AKT/mTOR signals in NPC development. HAGLROS level in NPC tissues and cell was very high. High level of HAGLROS indicated a short overall survival in NPC patients. Depressing of HAGLROS lessened NPC cell viability, enhanced apoptosis and reduced autophagy. Besides, HAGLROS negative controlled miR-100 and consequently targeted ATG14 expression, thus modulating NPC cell viability, apoptosis, and autophagy. Besides, dysregulation of HAGLROS/miR-100/ATG14 axis was correlated to the briskness of PI3K/AKT/mTOR signals in NPC cells. Our results indicate that of the augment of HAGLROS contributes to NPC development via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals. Our study will offer a comprehensive basis for better illustrating the pathogenesis of NPC. Highlights HAGLROS expression was upregulated in NPC tissues and cells. High expression of HAGLROS indicated a short overall survival in NPC patients. Silencing of HAGLROS promoted apoptosis and inhibited autophagy of NPC cells. HAGLROS regulated ATG14 expression in NPC cells via sponging miR-100. HAGLROS/miR-100/ATG14 axis regulated NPC development via PI3K/AKT/mTOR pathway.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity