Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1073954
Reference Type
Journal Article
Title
Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications
Author(s)
Fu, Q; Rahaman, MN; Dogan, F; Bal, BS
Year
2008
Is Peer Reviewed?
Yes
Journal
Biomedical Materials
ISSN:
1748-6041
EISSN:
1748-605X
Volume
3
Issue
2
Page Numbers
025005
Language
English
PMID
18458369
DOI
10.1088/1748-6041/3/2/025005
Web of Science Id
WOS:000256454000006
URL
https://iopscience.iop.org/article/10.1088/1748-6041/3/2/025005
Exit
Abstract
Freeze casting of aqueous suspensions was investigated as a method for preparing porous hydroxyapatite (HA) scaffolds for eventual application to bone tissue engineering. Suspensions of HA particles (10-20 volume percent) were frozen unidirectionally in a cylindrical mold placed on a cold steel substrate (-20 degrees C). After sublimation of the ice, sintering for 3 h at 1350 degrees C produced constructs with dense HA lamellae, with porosity of approximately 50%, and inter-lamellar pore widths of 5-30 microm. These constructs had compressive strengths of 12 +/- 1 MPa and 5 +/- 1 MPa in the directions parallel and perpendicular to the freezing direction, respectively. Manipulation of the microstructure was achieved by modifying the solvent composition of the suspension used for freeze casting. The use of water-glycerol mixtures (20 wt% glycerol) resulted in the production of constructs with finer pores (1-10 microm) and a larger number of dendritic growth connecting the HA lamellae, and higher strength. On the other hand, the use of water-dioxane mixtures (60 wt% dioxane) resulted in a cellular-type microstructure with larger pores (90-110 microm). The mechanical response showed high strain tolerance (5-10% at the maximum stress), high strain for failure (>20%) and sensitivity to the loading rate. The favorable mechanical behavior of the porous constructs, coupled with the ability to modify their microstructure, indicates the potential of the present freeze casting route for the production of porous scaffolds for bone tissue engineering.
Tags
OPPT REs
•
OPPT_1,4-Dioxane_C. Engineering
Data screening total
Screening: Excluded
•
OPPT_1,4-Dioxane_D. Exposure
Total – title/abstract screening
Off topic
•
OPPT_1,4-Dioxane_E. Fate
Total – title/abstract screening
Off topic
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity