Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1308895
Reference Type
Journal Article
Title
Response of primary rabbit kidney proximal tubule cells to estrogens
Author(s)
Han, HJ; Jung, JC; Taub, M
Year
1999
Is Peer Reviewed?
Yes
Journal
Journal of Cellular Physiology
ISSN:
0021-9541
EISSN:
1097-4652
Volume
178
Issue
1
Page Numbers
35-43
Language
English
PMID
9886488
DOI
10.1002/(SICI)1097-4652(199901)178:1<35::AID-JCP5>3.0.CO;2-P
Abstract
The effects of estrogens on the growth and function of primary rabbit kidney proximal tubule (RPT) cells have been examined in hormonally defined phenol red-free medium. 17beta-estradiol was observed to stimulate growth at dosages as low as 10(-10) M. The growth stimulatory effects of 17beta-estradiol were mitigated in the presence of hydrocortisone, suggesting that these two steroid hormones acted at least in part by common mechanisms. The effects of other steroids known to interact with the estrogen receptor were examined. Alpha estradiol was found to be growth stimulatory over a concentration range of 10(-9) to 10(-8) M, albeit to a lower extent than beta estradiol. In addition, the anti-estrogen tamoxifen was also growth stimulatory (unlike the case with the human mammary tumor cell line MCF-7). The effects of several metabolic precursors of 17beta-estradiol were examined, including testosterone, which was growth stimulatory, and progesterone, which was growth inhibitory. The growth stimulatory effects of 17beta-estradiol, alpha estradiol, and tamoxifen could possibly be explained by their interaction with an estrogen receptor. Indeed, metabolic labelling and immunoprecipitation studies indicated the presence of such an estrogen receptor in the primary cultures. The rate of biosynthesis of the estrogen receptor was found to be affected by the presence of exogenously added 17beta-estradiol. 17beta-estradiol was also observed to increase the activity of two brush border enzymes, alkaline phosphatase and gamma glutamyl transpeptidase, during the growth phase of the primary cultures.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity