Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1323999
Reference Type
Journal Article
Title
Oxovanadium(V) tetrathiacalix[4]arene complexes and their activity as oxidation catalysts
Author(s)
Hoppe, E; Limberg, C
Year
2007
Is Peer Reviewed?
Yes
Journal
Chemistry: A European Journal
ISSN:
0947-6539
EISSN:
1521-3765
Volume
13
Issue
24
Page Numbers
7006-7016
Language
English
PMID
17566134
DOI
10.1002/chem.200700354
Web of Science Id
WOS:000249039700025
Abstract
With the aim of modeling reactive moieties and relevant intermediates on the surfaces of vanadium oxide based catalysts during oxygenation/dehydrogenation of organic substrates, mono- and dinuclear vanadium oxo complexes of doubly deprotonated p-tert-butylated tetrathiacalix[4]arene (H4TC) have been synthesized and characterized: PPh4[(H2TC)VOCl(2)] (1) and (PPh4)2[{(H2TC)V(O)(mu-O)}2] (2). According to the NMR spectra of the dissolved complexes they both retain the structures adopted in the crystalline state, as revealed by single-crystal X-ray crystallography. Compounds 1 and 2 were tested as catalysts for the oxidation of alcohols with O(2) at 80 degrees C. Both 1 and 2 efficiently catalyze the oxidation of benzyl alcohol, crotyl alcohol, 1-phenyl-1-propanol, and fluorenol, and in most cases dinuclear complex 2 is more active than mononuclear complex 1. Moreover, the two thiacalixarene complexes 1 and 2 are in many instances more active than oxovanadium(V) complexes containing "classical" calixarene ligands tested previously. Complexes 1 and 2 also show significant activity in the oxidation of dihydroanthracene. Further investigations led to the conclusion that 1 acts as precatalyst that is converted to the active species PPh4[(TC)V==O] (3) at 80 degrees C by double intramolecular HCl elimination. For complex 2, the results of mechanistic investigations indicated that the oxidation chemistry takes place at the bridging oxo ligands and that the two vanadium centers cooperate during the process. The intermediate (PPh4)2[{H2TCV(O)}2(mu-OH)(mu-OC13H9)] (4) was isolated and characterized, also with respect to its reactivity, and the results afforded a mechanistic proposal for a reasonable catalytic cycle. The implications which these findings gathered in solution may have for oxidation mechanisms on the surfaces of V-based heterogeneous catalysts are discussed.
Keywords
Calixarenes; Heterogeneous catalysis; O ligands; Oxidation; Vanadium
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity