Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1539472
Reference Type
Journal Article
Title
Ion-specific aggregation of hydrophobic particles
Author(s)
López-León, T; Ortega-Vinuesa, JL; Bastos-González, D
Year
2012
Is Peer Reviewed?
1
Journal
ChemPhysChem
ISSN:
1439-4235
EISSN:
1439-7641
Volume
13
Issue
9
Page Numbers
2382-2391
Language
English
PMID
22556130
DOI
10.1002/cphc.201200120
Web of Science Id
WOS:000305131000022
Abstract
This work shows that colloidal stability and aggregation kinetics of hydrophobic polystyrene (PS) nanospheres are extremely sensitive to the nature of the salt used to coagulate them. Three PS latices and four aggregating electrolytes, which all share the same cation (Na(+)) but have various anions located at different positions in the classical Hofmeister series depending on their kosmotropic or chaotropic character, are used. The present study focuses on analyzing different aggregating parameters, such as critical coagulation concentrations (CCC), cluster size distributions (CSD), initial kinetic constants K(11), and fractal dimensions of the aggregates d(f). While aggregation induced by SO(4)(2-) and Cl(-) behaved according to the predictions of the classical Derjaguin-Landau-Verwey-Overbeek theory, important discrepancies are found with NO(3)(-), which become dramatic when using SCN(-). These discrepancies among the anions were far more significant when they acted as counterions rather than as co-ions. While SO(4)(2-) and Cl(-) trigger fast diffusion-limited aggregation, SCN(-) gives rise to a stationary cluster size distribution in a few aggregation times when working with cationic PS particles. Clear differences are found among all analyzed parameters (CCC, CSD, K(11), and d(f)), and the experimental findings show that particles aggregate in potential wells whose depth is controlled by the chaotropic character of the anion. This paper presents new experimental evidence that may help to understand the microscopic origin of Hofmeister effects, as the observations are consistent with appealing theoretical models developed in the last few years.
Keywords
aggregation; anions; colloids; interfaces; salt effect
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity