Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1652872
Reference Type
Journal Article
Title
Markers of macrophage differentiation in experimental silicosis
Author(s)
Misson, P; van den Brûle, S; Barbarin, V; Lison, D; Huaux, F
Year
2004
Is Peer Reviewed?
Yes
Journal
Journal of Leukocyte Biology
ISSN:
0741-5400
EISSN:
1938-3673
Volume
76
Issue
5
Page Numbers
926-932
Language
English
PMID
15292275
DOI
10.1189/jlb.0104019
Web of Science Id
WOS:000224867500002
Abstract
Macrophages are characterized by a marked phenotypic heterogeneity depending on their microenvironmental stimulation. Beside classical activation (M1), it has been shown that macrophages could follow a different activation pathway after stimulation with interleukin (IL)-4 or IL-13 (M2). Recently, it has been postulated that those "alternatively activated" macrophages may be critical in the control of fibrogenesis. In an experimental model of silicosis, where pulmonary macrophages play a central role, we addressed the question of whether lung fibrosis development would be associated with alternative macrophage activation. As available markers for alternative macrophage activation, type-1 arginase (Arg-1), Fizz1, Ym1/2, and mannose receptor expression were evaluated at the mRNA and/or protein levels at different stages of the disease. Nitric oxide synthase-2 (NOS-2) expression was also examined to investigate the classical counterpart. We found that the expression of Arg-1, Fizz1, and NOS-2 in adherent bronchoalveolar lavage cells was highly up-regulated 3 days after silica administration but returned to control levels during the fibrotic stage of the disease (60 days). By comparing the early response to silica in C57BL/6 and BALB/c mice, we observed that the amplitude of Arg-1 mRNA up-regulation was not associated with the severity of lung fibrosis. Using a model of manganese dioxide particles (resolutive alveolitis), we showed that this early Arg-1 mRNA was not specific to a fibrogenic lung response. Our data indicate that the modifications of M1/M2 marker expression are limited to the early inflammatory stage of silicosis and that the establishment of a fibrotic process is not necessarily associated with M2 polarization.
Keywords
M1/M2; fibrosis; collagen
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity