Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1778916
Reference Type
Journal Article
Title
Potassium transport by amino acid permeases in Saccharomyces cerevisiae
Author(s)
Wright, MB; Ramos, J; Gomez, MJ; Moulder, K; Scherrer, M; Munson, G; Gaber, RF
Year
1997
Is Peer Reviewed?
Yes
Journal
Journal of Biological Chemistry
ISSN:
0021-9258
EISSN:
1083-351X
Volume
272
Issue
21
Page Numbers
13647-13652
Language
English
PMID
9153214
Abstract
Deletion of the potassium transporter genes TRK1 and TRK2 impairs potassium uptake in Saccharomyces cerevisiae, resulting in a greatly increased requirement for the ion and the inability to grow on low pH medium. Selection for mutations that restored growth of trk1Delta trk2Delta cells on low pH (3.0) medium led to the isolation of a dominant suppressor that also partially suppressed the increased K+ requirement of these cells. Molecular analysis revealed the suppressor to be an allele of BAP2 that encodes a permease for branched chain amino acids. The suppressor mutation (BAP2-1) converts a phenylalanine codon, highly conserved among the amino acid permease genes, to a serine codon in a region predicted to lie within the sixth membrane-spanning domain. Generation of the analogous mutation in the histidine permease produced an allele, HIP1-293, that similarly suppressed the low pH sensitivity of trk1Delta trk2Delta cells. Suppression of trk1Delta trk2Delta phenotypes by BAP2-1 or HIP1-293 was correlated with increased Rb+ uptake. The presence of the substrate amino acids enhanced but was not essential for suppression of trk1Delta trk2Delta phenotypes and increased Rb+ uptake. The conserved site altered by the suppressor mutations appears to be important; his4 HIP1-293 cells show an increased requirement for histidine compared with his4 HIP1 cells.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity