Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1792751
Reference Type
Journal Article
Title
Substituent Effects on Electrophilic Catalysis by the Carbonyl Group: Anatomy of the Rate Acceleration for PLP-Catalyzed Deprotonation of Glycine
Author(s)
Crugeiras, J; Rios, Ana; Riveiros, E; Richard, JP
Year
2011
Is Peer Reviewed?
Yes
Journal
Journal of the American Chemical Society
ISSN:
0002-7863
EISSN:
1520-5126
Volume
133
Issue
9
Page Numbers
3173-3183
Language
English
PMID
21323335
DOI
10.1021/ja110795m
Abstract
First-order rate constants, determined by (1)H NMR, are reported for deuterium exchange between solvent D(2)O and the α-amino carbon of glycine in the presence of increasing concentrations of carbonyl compounds (acetone, benzaldehyde, and salicylaldehyde) and at different pD and buffer concentrations. These rate data were combined with (1)H NMR data that define the position of the equilibrium for formation of imines/iminium ions from addition of glycine to the respective carbonyl compounds, to give second-order rate constants k(DO) for deprotonation of α-imino carbon by DO(-). The assumption that these second-order rate constants lie on linear structure-reactivity correlations between log k(OL) and pK(a) was made in estimating the following pK(a)'s for deprotonation of α-imino carbon: pK(a) = 22, glycine-acetone iminium ion; pK(a) = 27, glycine-benzaldehyde imine; pK(a) ≈ 23, glycine-benzaldehyde iminium ion; and, pK(a) = 25, glycine-salicylaldehyde iminium ion. The much lower pK(a) of 17 [Toth, K.; Richard, J. P. J. Am. Chem. Soc. 2007, 129, 3013-3021] for carbon deprotonation of the adduct between 5'-deoxypyridoxal (DPL) and glycine shows that the strongly electron-withdrawing pyridinium ion is unique in driving the extended delocalization of negative charge from the α-iminium to the α-pyridinium carbon. This favors carbanion protonation at the α-pyridinium carbon, and catalysis of the 1,3-aza-allylic isomerization reaction that is a step in enzyme-catalyzed transamination reactions. An analysis of the effect of incremental changes in structure on the activity of benzaldehyde in catalysis of deprotonation of glycine shows the carbonyl group electrophile, the 2-O(-) ring substituent and the cation pyridinium nitrogen of DPL each make a significant contribution to the catalytic activity of this cofactor analogue. The extraordinary activity of DPL in catalysis of deprotonation of α-amino carbon results from the summation of these three smaller effects.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity