Health & Environmental Research Online (HERO)


Print Feedback Export to File
2003244 
Journal Article 
Adsorption and degradation of ketoprofen in soils 
Xu, J; Wu, L; Chen, W; Chang, AC 
2009 
Yes 
Journal of Environmental Quality
ISSN: 0047-2425
EISSN: 1537-2537 
38 
1177-1182 
English 
Ketoprofen, a nonsteroidal anti-inflammatory drug (NSAID), was commonly found in treated wastewater due to its incomplete removal during sewage treatment plant processes. As treated wastewater is increasingly used for landscape irrigation, it is imperative to understand the leaching potential for ketoprofen in receiving soils. In this study, adsorption and degradation experiments were conducted in four U.S. soils with different physicochemical characteristics. Ketoprofen was not strongly adsorbed to the four soils with K(d) values ranging from 1.26 to 8.24 L kg(-1), suggesting its potential to move downward with percolating water. The adsorption was positively related to the soil organic matter (OM) content (R(2) = 0.890). Degradation experiment showed that half-lives (t(1/2)) of ketoprofen were 4.58 d in Arlington sandy loam (ASL, coarse-loamy, mixed, active, thermic Haplic Durixeralfs), 8.04 d in Hanford loamy sand (HLS, coarse-loamy, mixed, superactive, nonacid, thermic Typic Xerorthents), 15.37 d in Imperial silty clay (ISC, fine, semectitc, calcareous, hyperthermic Vertic Torrifluvents), and 27.61 d in Palouse silt loam (PSL) soil (fine-silty, mixed, superactive, mesic Pachic Ultic Haploxerolls), respectively. Degradation of ketoprofen in soils appeared to be influenced by the soil OM content. The prolonged t(1/2) by sterilization indicated that microbial degradation was the dominant pathway for ketoprofen degradation in soils, while photodegradation only contributed a small portion to the ketoprofen degradation. The t(1/2) and K(oc) values were fitted to screening models to predict the leaching potential of ketoprofen in soils. It appeared that relatively high leaching potential of ketoprofen existed in ISC and PSL soils.