Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2013501
Reference Type
Journal Article
Title
Electrochemical analysis of methylparathion pesticide by a gemini surfactant-intercalated clay-modified electrode
Author(s)
Tcheumi, HL; Tonle, IK; Ngameni, E; Walcarius, A
Year
2010
Is Peer Reviewed?
1
Journal
Talanta
ISSN:
0039-9140
EISSN:
1873-3573
Volume
81
Issue
3
Page Numbers
972-979
Language
English
PMID
20298881
DOI
10.1016/j.talanta.2010.01.049
Web of Science Id
WOS:000276877500034
Abstract
In this study, an hybrid material obtained by the intercalation of a gemini surfactant between the layers of smectite-type clay, was fully characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and N(2) adsorption-desorption experiments (BET method). To ascertain the intercalation process of the starting clay by the dimeric surfactant, the permselectivity and ion exchange properties of the organoclay were investigated by ion exchange voltammetry using [Fe(CN)(6)](3-) and [Ru(NH(3))(6)](3+) as redox probes, by the means of a clay film-modified electrode. Due to its organophilic character, the surfactant-intercalated complex was evaluated as electrode modifier for the accumulation of methylparathion (MP) pesticide. The electroanalytical procedure involves two steps: preconcentration under open-circuit followed by voltammetric detection by square wave voltammetry: the peak current obtained (after 5min preconcentration in 4x10(-5)molL(-1)MP) on a glassy carbon electrode coated by a thin film of the modified clay was more than five times higher than that exhibited by the same substrate covered by a film of the pristine clay. This opens the way to the development of a sensitive method for the detection of the pesticide. Many parameters that can affect the stripping response (surfactant loading of the hybrid material, film composition, pH of the detection medium, preconcentration time, electrolysis potential and duration as well as some other instrumental parameters) were systematically investigated to optimize the sensitivity of the organoclay-modified electrode. After optimization, a linear calibration curve for MP was obtained in the concentration range from 4x10(-7) to 8.5x10(-6)molL(-1) in acetate buffer (pH 5), with a detection limit of 7x10(-8)molL(-1) (signal-to-noise ratio equal to 3). The interference effect of various inorganic ions likely to influence the stripping determination of the pesticide was also examined, and the described method was applied to spring water analysis.
Keywords
Gemini surfactant; Organoclay; Methylparathion; Clay film-modified electrode; Voltammetry
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity