Health & Environmental Research Online (HERO)


Print Feedback Export to File
2099338 
Journal Article 
A review of tephra transport and dispersal models: Evolution, current status, and future perspectives 
Folch, A 
2012 
Journal of Volcanology and Geothermal Research
ISSN: 0377-0273 
235 
96-115 
Tephra transport models try to predict atmospheric dispersion and sedimentation of tephra depending on meteorology, particle properties, and eruption characteristics, defined by eruption column height, mass eruption rate, and vertical distribution of mass. Models are used for different purposes, from operational forecast of volcanic ash clouds to hazard assessment of tephra dispersion and fallout. The size of the erupted particles, a key parameter controlling the dynamics of particle sedimentation in the atmosphere, varies within a wide range. Largest centimetric to millimetric particles fallout at proximal to medial distances from the volcano and sediment by gravitational settling. On the other extreme, smallest micrometric to sub-micrometric particles can be transported at continental or even at global scales and are affected by other deposition and aggregation mechanisms. Different scientific communities had traditionally modeled the dispersion of these two end members. Volcanologists developed families of models suitable for lapilli and coarse ash and aimed at computing fallout deposits and for hazard assessment. In contrast, meteorologists and atmospheric scientists have traditionally used other atmospheric transport models, dealing with finer particles, for tracking motion of volcanic ash clouds and, eventually, for computing airborne ash concentrations. During the last decade, the increasing demand for model accuracy and forecast reliability has pushed on two fronts. First, the original gap between these different families of models has been filled with the emergence of multi-scale and multi-purpose models. Second, new modeling strategies including, for example, ensemble and probabilistic forecast or model data assimilation are being investigated for future implementation in models and or modeling strategies. This paper reviews the evolution of tephra transport and dispersal models during the last two decades, presents the status and limitations of the current modeling strategies, and discusses some emergent perspectives expected to be implemented at operational level during the next few years. Improvements in both real-time forecasting and long-term hazard assessment are necessary to loss prevention programs on a local, regional, national and international level. (C) 2012 Elsevier B.V. All rights reserved. 
Tephra transport and dispersion models; Volcanic ash; Operational forecast; Hazard assessment