Health & Environmental Research Online (HERO)


Print Feedback Export to File
2270419 
Journal Article 
Chronic pancreatitis: role of oxidative stress and antioxidants 
Bhardwaj, P; Yadav, RK 
2013 
Yes 
Free Radical Research
ISSN: 1071-5762
EISSN: 1029-2470 
47 
11 
941-949 
Chronic pancreatitis (CP) is characterized by pain, and exocrine and endocrine insufficiency of pancreas. Several hypotheses have been put forward to explain the hitherto partially understood pathophysiology of CP. In the past decade, animal and clinical studies have suggested that an increased chronic oxidative stress (OS) plays a key role in pathophysiology of CP and perpetuates its clinical and histological symptoms (pain and fibrosis-necrosis, respectively). Mounting OS in pancreatic acinar cells is a result of overproduction of free radicals (FR) during xenobiotic metabolism. It has been shown that Phase I cytochrome P450 enzymes of xenobiotic pathway are induced when exposed to a xenobiotic overload including alcohol, tobacco, smoke and other dietary toxins, which exceeds the capacity of Phase II conjugation due to limited glutathione availability. Consequently, there is an overload of toxic metabolites as well as FR. Additionally, bioactivation of subsequently entering compounds may occur increasing their toxicity. Such an imbalance overwhelms the antioxidant capacity of the body resulting in undefended chronic OS that derails the normal physiology of pancreatic acinar cells since FR act as second messengers controlling the cellular signaling. OS hypothesis is further supported by the studies that demonstrated that antioxidant supplementation ameliorated pain. Moreover, animal studies have demonstrated a cessation of fibrotic cascade with antioxidant supplementation. In a recent large randomized controlled trial, it was demonstrated that antioxidant supplementation led to a significant reduction in pain, and also lowered the OS in patients with alcoholic or idiopathic CP. 
chronic pancreatitis; oxidative stress; antioxidants; pain; pathophysiology