Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2276876
Reference Type
Journal Article
Title
Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid
Author(s)
Ma, B; Wang, C; Yang, W; Yang, Bo; Zhang, Y
Year
2013
Is Peer Reviewed?
1
Journal
Minerals Engineering
ISSN:
0892-6875
Volume
45
Page Numbers
151-158
DOI
10.1016/j.mineng.2013.02.009
Web of Science Id
WOS:000319632200023
Abstract
The selective extraction of nickel and cobalt over iron from an Indonesian limonitic laterite was investigated using nitric acid pressure leaching (NAPL). The mineralogical analysis showed that the major minerals were goethite and magnetite, and the content of the divalent iron was as high as 7.06%. Nickel and cobalt were mainly distributed in these two minerals; however, the distribution was non-uniform. A series experiments were conducted to examine the basic parameters and propose the optimal conditions for the extraction. When the ore was treated via HPAL under the optimal condition, the extracted nickel and cobalt were less than 75%, and the iron concentration in the leach liquor was over 12.5 g/L. By contrast, over 85% of nickel and cobalt were extracted and about 1.8 g/L iron was achieved using NAPL. The loss of nickel and cobalt can be mainly attributed to the undissolved magnetite and manganese minerals. The leaching process of NAPL is a dissolution-oxidation-precipitation mechanism, and in this process nitric acid acts as both a lixiviant and an oxidant. The formation of hematite results in a low iron concentration in the leach liquor without oxygen injected. Meanwhile, the oxidation and the precipitation of dissolved divalent iron results in a calculated savings in acid consumption of about 120 kg nitric acid per ton of ore can be obtained, which is equal to over 93 kg of sulfuric acid per ton of ore. Moreover, lower residual acid (20 g/L nitric acid) is a significant advantage of NAPL. The iron residues had a high iron content (>56 wt%) with no sulfur, making it suitable as raw materials for ironmaking. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords
Fe (II)-rich limonitic laterite ores; Selective pressure leaching; Nitric acid; Nickel; Iron
Tags
IRIS
•
Cobalt
LitSearch: January 2008 - August 2018
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity