Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2291210
Reference Type
Journal Article
Title
Measuring tropospheric vertical distribution and vertical column density of NO2 by multi-axis differential optical absorption spectroscopy
Author(s)
Wang Yang; Li Ang; Xie Pin-Hua; Chen Hao; Mou Fu-Sheng; Xu Jin; Wu Feng-Cheng; Zeng Yi; Liu Jian-Guo; Liu Wen-Qing
Year
2013
Is Peer Reviewed?
1
Journal
Wuli Xuebao
ISSN:
1000-3290
Volume
62
Issue
20
DOI
10.7498/aps.62.200705
Web of Science Id
WOS:000327189800018
Abstract
The inversion method of the vertical profile and vertical column density (VCD) of tropospheric NO2 using multi-axis differential optical absorption spectroscopy (MAX-DOAS) is investigated in this paper. An inversion method of two-step procedure is operated. In this method firstly the aerosol vertical profile is retrieved. Then the vertical distribution of trace gases is retrieved based on the corresponding aerosol status. Nonlinear optimal estimation algorithm is extended to acquire NO2 profile to reduce the dependence of the inversion on priori information. It is more advantageous to automatically obtain trace gases profile. At first we investigate how to calculate some parameters (weighting function, the covariance matrices of measurement, and a priori information) of the algorithm and design nonlinear iteration strategy suited to the region where NO2 vertical distribution usually shows rapid variation. Then this inversion algorithm is verified by computer simulation in the cases of box profile and elevated profile of NO2. It is indicated that the distribution of NO2 below 2 km could be well rebuilt and the retrieval accuracy of surface-near NO2 volume mixing ratio is 0.6%. The study of how accurately this algorithm can rebuild the same true profile in three aerosol status of low aerosol, high aerosol and elevated aerosol indicates that similar retrieval results could be acquired. In addition, the effect of wrong aerosol status on the retrieving of NO2 profile and the error sources of this algorithm are analyzed. After that a continuous observation is reported in the city of Hefei. NO2 VCDs derived from MAX-DOAS are compared with those from satellite observations, and the correlation coefficient is 0.85. The surface-near NO2 concentrations measured by MAX-DOAS are compared with those from LP-DOAS, and the correlation coefficient is 0.76. In addition, the simplified MAX-DOAS inversion method of obtaining the trace gas profile usually uses invariable typical aerosol status as input. The comparison with the tropospheric NO2 VCD from simplified method indicates that the using of invariable typical aerosol status would cause large deviation of NO2 VCD, and its maximum relative deviation is about 112%. So exactly acquiring aerosol status, aerosol optical density especially, is necessary to exactly retrieve tropospheric NO2 vertical column density.
Keywords
multi-axis differential optical absorption spectroscopy; tropospheric vertical profile of NO2; tropospheric NO2 vertical column density; optimal estimation method
Tags
•
LitSearch-NOx (2024)
TIAB Screening
Atmospheric
Round 1
Exclude
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity