Health & Environmental Research Online (HERO)


Print Feedback Export to File
2459066 
Journal Article 
Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate Keggin clusters 
Liu, HC; Iglesia, E 
2004 
Yes 
Journal of Catalysis
ISSN: 0021-9517
EISSN: 1090-2694 
223 
161-169 
H5PV2MO10O40 polyoxometallate Keggin clusters supported on ZrO2, TiO2, SiO2, and Al2O3 are effective catalysts for CH3OH oxidation reactions to form HCHO, methyl formate (MF), and dimethoxymethane (DMM). Rates and selectivities and the structure of supported clusters depend on the surface properties of the oxide supports. Raman spectroscopy showed that Keggin structures remained essentially intact on ZrO2, TiO2, and SiO2 after treatment in air at 553 K, but decomposed to MoOx and VOx oligomers on Al2O3. Accessible protons per Keggin unit (KU) were measured during CH3OH oxidation by titration with 2,6-di-tert-butyl pyridine. For similar KU surface densities (0.28-0.37 KU/nm(2)), the number of accessible protons was larger on SiO2 than on ZrO2 and TiO2 and much smaller on Al2O3 supports, even though residual dimethyl ether (DME) synthesis rates after titrant saturation indicated that the fractional dispersion of KU was similar on the first three supports. These effects of support on structure and on H+ accessibility reflect varying extents of interaction between polyoxometallate clusters and supports. Rates of CH3OH oxidative dehydrogenation per KU were higher on ZrO2 and TiO2 than on SiO2 at similar KU surface densities (0.28-0.37 KU/nm(2)) and dispersion, indicating that redox properties of Keggin clusters depend on the identity of the support used to disperse them. ZrO2 and TiO2 supports appear to enhance the reducibility of anchored polyoxometallate clusters. Rates were much lower on Al2O3, because structural degradation led to less reactive MoOx and VOx domains. CH3OH reactions involve primary oxidation to form HCHO and subsequent secondary reactions to form DMM and MF. These reactions involve HCHO-CH3OH acetalization leading to methoxy in ethanol (CH3OCH2OH) or hemiacetal intermediates, which condense with CH3OH on acid sites to form DMM or dehydrogenate to form MF. COx formation rates are much lower than those of other reactions, and DME forms in parallel pathways catalyzed by acid sites. Secondary reactions leading to DMM and MF are strongly influenced by the chemical properties of support surfaces. Acidic SiO2 surfaces favored DMM formation, while amphoteric or dehydrogenating surfaces on ZrO2 and TiO2 led to MF formation, as a result of the varying role of each Support in directing the reactions of HCHO and CH3OH and of the CH3OCH2OH intermediates toward DMM or MF, which was confirmed using physical catalyst-pure support mixtures. These Support effects reflect the bifunctional pathways of CH3OH reactions. These pathways are consistent with the effects of residence time and of the partial removal of H+ sites by titration using 2,6-di-tert-butyl pyridine. (C) 2004 Published by Elsevier Inc. 
methanol oxidation; Keggin structures; support effects; methyl formate synthesis; zirconia 
IRIS
• Formaldehyde [archived]
     Inflammation/Reactive Oxygen Species
          WOS
          Screened by Title/Abstract
               Not specific to Formaldehyde Exposure (other chemicals)
     Retroactive RIS import
          2014
               HERO_Formaldehyde_InflammationReactiveOxygenSpecies_pid_31_uid_5713Sorting091214
               HERO_Formaldehyde_InflammationReactiveOxygenSpecies_pid_31_uid_5713
                    Screened (Title/Abstract)
                         Not specific to Formaldehyde Exposure (other chemicals)
• IRIS Formaldehyde (Inhalation) [Final 2024]
     Literature Indexing
          WoS
     Literature Identification
          Inflammation and Immune-Related Mechanistic Studies
               Excluded