Health & Environmental Research Online (HERO)


Print Feedback Export to File
2574120 
Journal Article 
Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China 
Liu, S; Hu, Min; Wu, Z; Wehner, B; Wiedensohler, A; Cheng, Y 
2008 
Atmospheric Environment
ISSN: 1352-2310
EISSN: 1873-2844 
42 
25 
6275-6283 
Continuous measurements of aerosol number size distribution in the range of 3 nm-10 mu m were performed in Pearl River Delta (PRD), China. These measurements were made during the period of 3 October to 5 November in 2004 at rural/coastal site, Xinken (22 degrees 37'N, 113 degrees 35'E, 6m above sea level), in the south suburb of Guangzhou City (22 degrees 37'N, 113 degrees 35'E, 6m abovesea level), using a Twin Differential Mobility Particle Sizer (TDMPS) combined with an Aerodynamic Particle Sizer (APS). The aerosol particles at Xinken were divided into four groups according to the observation results: nucleation mode particles (3-30 nm), Aitken mode particles (30-130 nm), accumulation mode particles (130-1000 nm) and coarse mode particles (1-10 mu m). Concentrations of nucleation mode, Aitken mode and accumulation mode particles were observed in the same order of magnitude (about 10,000 cm(-3)), among which the concentration of Aitken mode particle was the highest. The Aitken mode particles usually had two peaks: the morning peak may be caused by the land-sea circulation, which is proven to be important for transporting aged aerosols back to the sampling site, while the noon peak was ascribed to the condensational growth of new particles. New particle formation events were found on 7 days of 27 days, the new particle growth rates ranged from 2.2 to 19.8 nm h(-1) and the formation rates ranged from 0.5 to 5.2 cm(-3) s(-1), both of them were in the range of typical observed formation rates (0.01-10 cm(-3) s(-1)) and typical particle growth rates (1-20 nm h(-1)). The sustained growth of the new particles for several hours under steady northeast wind indicated that the new particle formation events may occur in a large homogeneous air mass. (c) 2008 Elsevier Ltd. All rights reserved. 
number size distribution; number concentration; new particle formation