Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2635210
Reference Type
Journal Article
Title
Distribution of the Sizes of Rock Cuttings in Gas Drilling At Various Depths
Author(s)
Li, Jun; Yang, S; Guo, B; Feng, Yin; Liu, G
Year
2012
Is Peer Reviewed?
Yes
Journal
Computer Modeling in Engineering & Sciences
ISSN:
1526-1492
Volume
89
Issue
2
Page Numbers
79-96
Web of Science Id
WOS:000315129000002
Abstract
In the process of gas drilling, the mechanism of transport of the cuttings up the annulus is significant, because it controls the minimum amount of volume of the required gas, the cost of cleaning the borehole, the stability of the borewell and the drill pipe erosion, etc. However, current studies in this area are only limited to theoretical discussions. The reason why drill cuttings are of very fine sizes, in air drilling, is believed to be due to the repeated crushing action of drill bit at the bottom of the hole, and the collision between cuttings themselves and the collision of the cuttings with the wellbore wall, and with the drill pipe, during the transport of the cuttings in the annulus. In this study, a mathematical model describing the crushing of the cuttings in gas drilling is developed by coupling the gas/solid two phase flow with rock failure mechanics. Using the presented model a numerical simulation was carried out on five particle sizes to study the particle distribution during the transport of the cuttings in the annulus. The simulation results clearly demonstrate the effect of the size of the cuttings on the distribution of the concentration of the cuttings along the annulus, and explains the fact why only small cuttings are observed at the wellhead. Samples of the cuttings were collected from the field in gas drilling, and sieve tests were conducted. The results prove that the presented mathematical model is valid. Consequently, this study helps understand the process of the transport of drill-cuttings in gas drilling, and contributes to an optimal design of separating/filtering equipment in recyclable gas drilling.
Keywords
gas drilling; cuttings lifting; solid transport by gas; crush; particle concentration; cuttings sieve test
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity