Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2662076
Reference Type
Journal Article
Title
Resonant infrared pulsed laser deposition of cyclic olefin copolymer films
Author(s)
Singaravelu, S; Klopf, JM; Schriver, KE; Park, HK; Kelley, MJ; Haglund, RF, Jr
Year
2014
Is Peer Reviewed?
Yes
Journal
Applied Physics A
ISSN:
0947-8396
EISSN:
1432-0630
Volume
114
Issue
4
Page Numbers
1285-1293
DOI
10.1007/s00339-013-7933-7
Web of Science Id
WOS:000332421700037
Abstract
Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 mu m C-H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C-H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity