Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2737614
Reference Type
Journal Article
Subtype
Review
Title
History of aromatase: Saga of an important biological mediator and therapeutic target
Author(s)
Santen, RJ; Brodie, H; Simpson, ER; Siiteri, PK; Brodie, A
Year
2009
Is Peer Reviewed?
1
Journal
Endocrine Reviews
ISSN:
0163-769X
EISSN:
1945-7189
Volume
30
Issue
4
Page Numbers
343-375
Language
English
PMID
19389994
DOI
10.1210/er.2008-0016
Web of Science Id
WOS:000266731700002
Relationship(s)
is supplemented by
3227638
- Supplemental materials
Abstract
Aromatase is the enzyme that catalyzes the conversion of androgens to estrogens. Initial studies of its enzymatic activity and function took place in an environment focused on estrogen as a component of the birth control pill. At an early stage, investigators recognized that inhibition of this enzyme could have major practical applications for treatment of hormone-dependent breast cancer, alterations of ovarian and endometrial function, and treatment of benign disorders such as gynecomastia. Two general approaches ultimately led to the development of potent and selective aromatase inhibitors. One targeted the enzyme using analogs of natural steroidal substrates to work out the relationships between structure and function. The other approach initially sought to block adrenal function as a treatment for breast cancer but led to the serendipitous finding that a nonsteroidal P450 steroidogenesis inhibitor, aminoglutethimide, served as a potent but nonselective aromatase inhibitor. Proof of the therapeutic concept of aromatase inhibition involved a variety of studies with aminoglutethimide and the selective steroidal inhibitor, formestane. The requirement for even more potent and selective inhibitors led to intensive molecular studies to identify the structure of aromatase, to development of high-sensitivity estrogen assays, and to "mega" clinical trials of the third-generation aromatase inhibitors, letrozole, anastrozole, and exemestane, which are now in clinical use in breast cancer. During these studies, unexpected findings led investigators to appreciate the important role of estrogens in males as well as in females and in multiple organs, particularly the bone and brain. These studies identified the important regulatory properties of aromatase acting in an autocrine, paracrine, intracrine, neurocrine, and juxtacrine fashion and the organ-specific enhancers and promoters controlling its transcription. The saga of these studies of aromatase and the ultimate utilization of inhibitors as highly effective treatments of breast cancer and for use in reproductive disorders serves as the basis for this first Endocrine Reviews history manuscript.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity