Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2756363
Reference Type
Journal Article
Title
NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation
Author(s)
Jeter, CR; Liu, B; Liu, X; Chen, X; Liu, C; Calhoun-Davis, T; Repass, J; Zaehres, H; Shen, JJ; Tang, DG
Year
2011
Is Peer Reviewed?
1
Journal
Oncogene
ISSN:
0950-9232
EISSN:
1476-5594
Volume
30
Issue
36
Page Numbers
3833-3845
Language
English
PMID
21499299
DOI
10.1038/onc.2011.114
Abstract
Cancer cell molecular mimicry of stem cells (SC) imbues neoplastic cells with enhanced proliferative and renewal capacities. In support, numerous mediators of SC self-renewal have been evinced to show oncogenic potential. We have recently reported that short-hairpin RNA-mediated knockdown of the embryonic stem cell (ESC) self-renewal gene NANOG significantly reduced the clonogenic and tumorigenic capabilities of various cancer cells. In this study, we sought to test the potential pro-tumorigenic functions of NANOG, particularly, in prostate cancer (PCa). Using qRT-PCR, we first confirmed that PCa cells expressed NANOG mRNA primarily from the NANOGP8 locus on chromosome 15q14. We then constructed a lentiviral promoter reporter in which the -3.8-kb NANOGP8 genomic fragment was used to drive the expression of green fluorescence protein (GFP). We observed that NANOGP8-GFP(+) PCa cells showed cancer stem cell (CSC) characteristics such as enhanced clonal growth and tumor regenerative capacity. To further investigate the functions and mechanisms of NANOG in tumorigenesis, we established tetracycline-inducible NANOG-overexpressing cancer cell lines, including both PCa (Du145 and LNCaP) and breast (MCF-7) cancer cells. NANOG induction promoted drug resistance in MCF-7 cells, tumor regeneration in Du145 cells and, most importantly, castration-resistant tumor development in LNCaP cells. These pro-tumorigenic effects of NANOG were associated with key molecular changes, including an upregulation of molecules such as CXCR4, IGFBP5, CD133 and ALDH1. The present gain-of-function studies, coupled with our recent loss-of-function work, establish the integral role for NANOG in neoplastic processes and shed light on its mechanisms of action.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity