Health & Environmental Research Online (HERO)


Print Feedback Export to File
2773310 
Journal Article 
Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A 
Wang, PP; Sun, GX; Zhu, YG 
2014 
Environmental Science & Technology
ISSN: 0013-936X
EISSN: 1520-5851 
48 
21 
12706-12713 
English 
Arsenic is a ubiquitous toxic contaminant in the environment. The methylation of arsenic can affect its toxicity and is primarily mediated by biological processes. Few studies have focused on the mechanism of arsenic methylation in archaea although archaea are widespread in the environment. Here, an arsenite [As(III)] methyltransferase (ArsM) was identified and characterized from an archaeon Methanosarcina acetivorans C2A. Heterologous expression of MaarsM was shown to confer As(III) resistance to an arsenic-sensitive strain of E. coli through arsenic methylation and subsequent volatilization. Purified MaArsM protein was further identified the function in catalyzing the formation of various methylated products from As(III) in vitro. Methylation of As(III) by MaArsM is highly dependent on the characteristics of the thiol cofactors used, with some of them (coenzyme M, homocysteine, and dithiothreitol) more efficient than GSH. Site-directed mutagenesis demonstrated that three conserved cysteine (Cys) residues (Cys62, Cys150, and Cys200) in MaArsM were necessary for As(III) methylation, of which only Cys150 and Cys200 were required for the methylation of monomethylarsenic. These results present a molecular pathway for arsenic methylation in archaea and provide some insight into the role of archaea in As biogeochemistry.