Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2792556
Reference Type
Journal Article
Title
Hydrolysis of cis- and trans-epoxyeicosatrienoic acids by rat red blood cells
Author(s)
Jiang, H; Zhu, AG; Mamczur, M; Morisseau, C; Hammock, BD; Falck, JR; Mcgiff, JC
Year
2008
Is Peer Reviewed?
Yes
Journal
Journal of Pharmacology and Experimental Therapeutics
ISSN:
0022-3565
EISSN:
1521-0103
Volume
326
Issue
1
Page Numbers
330-337
Language
English
PMID
18445784
DOI
10.1124/jpet.107.134858
Web of Science Id
WOS:000256889300037
Abstract
Erythrocytes serve as reservoirs for cis- and trans-epoxyeicosatrienoic acids (EETs). Incubation of rat red blood cells (RBCs) with cis- and trans-EETs produces threo- and erythro-dihydroxyeicosatrienoic acids, respectively. The V(max) of EET hydrolysis by rat intact RBCs (2.35 +/- 0.24 pmol/min/10(8) RBCs for 14,15-trans-EET) decreased by approximately 2 to 3-fold sequentially from 14,15-, 11,12- to 8,9-EETs for both cis- and trans-isomers. The V(max) of trans-EET hydrolysis by RBCs is approximately 2 to 3 times that of the corresponding cis-EETs. Incubation of EETs with recombinant murine soluble epoxide hydrolase (sEH) yielded the same geometric and regio preferences of EET hydrolysis as with rat intact RBCs. The principal epoxide hydrolase activity for EET hydrolysis (approximately 90%) is present in the erythrocyte cytosol. Western blots of sEH suggested a concentration of sEH protein to be approximately 2 microg/mg protein or 0.4 microg/10(9) RBCs. The apparent K(m) values of EETs were between 1 and 2 microM, close to the K(m) for purified sEH as reported. Erythrocyte hydration of cis- and trans-EETs was blocked by sEH inhibitors, 1,3-dicyclohexylurea and 4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid. Erythrocyte sEH activity was inhibited more than 80% by 0.2% bovine serum albumin in the buffer. Preferred hydrolysis of 14,15-EETs and trans-epoxides characterizes sEH activity in RBCs that regulates the hydrolysis and release of cis- and trans-EETs in the circulation. Inhibition of sEH has produced antihypertensive and antiinflammatory effects. Because plasma trans-EETs would increase more than cis-EETs with sEH inhibition, the potential roles of trans-EETs and erythrocyte sEH in terms of circulatory regulation deserve attention.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity