Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2806170
Reference Type
Journal Article
Title
Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO2(110)
Author(s)
Li, SC; Wang, JG; Jacobson, P; Gong, XQ; Selloni, A; Diebold, U
Year
2009
Is Peer Reviewed?
Yes
Journal
Journal of the American Chemical Society
ISSN:
0002-7863
EISSN:
1520-5126
Volume
131
Issue
3
Page Numbers
980-984
Language
English
PMID
19123790
DOI
10.1021/ja803595u
Abstract
Adsorbate-induced band gap states in semiconductors are of particular interest due to the potential of increased light absorption and photoreactivity. A combined theoretical and experimental (STM, photoemission) study of the molecular-scale factors involved in the formation of gap states in TiO(2) is presented. Using the organic catechol on rutile TiO(2)(110) as a model system, it is found that the bonding geometry strongly affects the molecular electronic structure. At saturation catechol forms an ordered 4 x 1 overlayer. This structure is attributed to catechol adsorbed on rows of surface Ti atoms with the molecular plane tilted from the surface normal in an alternating fashion. In the computed lowest-energy structure, one of the two terminal OH groups at each catechol dissociates and the O binds to a surface Ti atom in a monodentate configuration, whereas the other OH group forms an H-bond to the next catechol neighbor. Through proton exchange with the surface, this structure can easily transform into one where both OH groups dissociate and the catechol is bound to two surface Ti in a bidentate configuration. Only bidendate catechol introduces states in the band gap of TiO(2).
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity