Health & Environmental Research Online (HERO)


Print Feedback Export to File
2813200 
Journal Article 
The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells 
Pei, XY; Dai, Y; Grant, S 
2003 
Leukemia
ISSN: 0887-6924
EISSN: 1476-5551 
17 
10 
2036-2045 
English 
Interactions between the small molecule Bcl-2 inhibitor HA14-1 and proteasome inhibitors, including bortezomib (Velcade; formerly known as PS-341) and MG-132, have been examined in human multiple myeloma cells. Sequential (but not simultaneous) exposure of MM.1S cells to bortezomib or MG-132 (10 h) followed by HA14-1 (8 h) resulted in a marked increase in mitochondrial injury (loss of DeltaPsim, cytochrome c, Smac/DIABLO, and apoptosis-inducing factor release), activation of procaspases-3, -8, and -9, and Bid, induction of apoptosis, and loss of clonogenicity. Similar interactions were observed in U266 and MM.1R dexamethasone-resistant myeloma cells. These events were associated with Bcl-2 cleavage, Bax, Bak, and Bad accumulation, mitochondrial translocation of Bax, abrogation of Mcl-1, Bcl-xL, and XIAP upregulation, and a marked induction of JNK and p53. Bortezomib/HA14-1 treatment triggered an increase in reactive oxygen species (ROS), which, along with apoptosis, was blocked by the free radical scavenger N-acetyl-L-cysteine (L-NAC). L-NAC also opposed bortezomib/HA14-1-mediated JNK activation, upregulation of p53 and Bax, and release of cytochrome c and Smac/DIABLO. Finally, bortezomib/HA14-1-mediated apoptosis was unaffected by exogenous IL-6. Together, these findings indicate that sequential exposure of myeloma cells to proteasome and small molecule Bcl-2 inhibitors such as HA14-1 may represent a novel therapeutic strategy in myeloma. 
apoptosis; myeloma; Bcl-2; HA14-1; ROS; mitochondrial injury