Health & Environmental Research Online (HERO)


Print Feedback Export to File
2816745 
Journal Article 
Cis-9,trans-11-conjugated linoleic acid inhibits allergic sensitization and airway inflammation via a PPARgamma-related mechanism in mice 
Jaudszus, A; Krokowski, M; Möckel, P; Darcan, Y; Avagyan, A; Matricardi, P; Jahreis, G; Hamelmann, E 
2008 
Yes 
Journal of Nutrition
ISSN: 0022-3166
EISSN: 1541-6100 
138 
1336-1342 
English 
Milk consumption from early childhood on has been found to be inversely correlated with allergic sensitization and the onset of bronchial asthma. We tested whether cis-9,trans-11-conjugated linoleic acid (c9,t11-CLA), naturally occurring in milk fat, may prevent allergic sensitization and inhibit airway inflammation in a murine asthma model. BALB/c mice were fed a diet enriched in 1 wt% of c9,t11-CLA or a control diet 7 d prior to and for 32 d during sensitization [d 1 and 14, 100 mg/L ovalbumin (OVA) in adjuvant vs. PBS] and airway challenges (d 28-30, 1% OVA in PBS vs. PBS). Subgroups of mice were coadministered 20 micromol/L of the selective PPARgamma antagonist GW9662 during each OVA challenge. C9,t11-CLA feeding resulted in significantly reduced IgE production and allergen-induced in vivo airway hyperresponsiveness. Further, less mucous plugging of segmental bronchi and significantly reduced interleukin-5 and eosinophils were determined in bronchoalveolar lavage fluids of c9,t11-CLA-fed mice. C9,t11-CLA feeding prevented the downregulation of PPARgamma mRNA in the lung tissues observed after allergen sensitization and airway challenges in control mice. The inhibitory effects of c9,t11-CLA on airway inflammation were partially prevented by coadministration of GW9962. Further, c9,t11-CLA feeding resulted in a significantly lower concentration of the eicosanoid precursor, arachidonic acid, in tissue lipids. These findings demonstrate that dietary c9,t11-CLA can reduce allergic airway inflammation, most likely via a PPARgamma-related mechanism and by reducing eicosanoid precursors. They give new insights into the fatty acid-mediated mechanism of immunomodulation and may represent a step toward an attractive novel strategy in the dietary prevention and treatment of allergic asthma.