Health & Environmental Research Online (HERO)


Print Feedback Export to File
2824770 
Journal Article 
Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate cd2+ 
Thévenod, F; Ciarimboli, G; Leistner, M; Wolff, NA; Lee, WK; Schatz, I; Keller, T; Al-Monajjed, R; Gorboulev, V; Koepsell, H 
2013 
Molecular Pharmaceutics
ISSN: 1543-8384
EISSN: 1543-8392 
10 
3045-3056 
English 
Polyspecific organic cation transporter Oct2 from rat (gene Slc22A2) has been previously shown to transport Cs(+). Here we report that human OCT2 (hOCT2) is able to transport Cd(2+) showing substrate saturation with a Michaelis-Menten constant (Km) of 54 ± 5.8 μM. Uptake of Cd(2+) by hOCT2 was inhibited by typical hOCT2 ligands (unlabeled substrates and inhibitors), and the rate of uptake was decreased by a point mutation in a substrate binding domain of hOCT2. Incubation of hOCT2 overexpressing human embryonic kidney 293 cells (HEK-hOCT2-C) or rat renal proximal tubule cells expressing rOct2 (NRK-52E-C) with Cd(2+) resulted in an increased level of apoptosis that was reduced by OCT2 inhibitory ligand cimetidine(+). HEK-hOCT2-C exhibited different functional properties when they were confluent or had been dissociated by removal of Ca(2+) and Mg(2+). Only confluent HEK-hOCT2-C transported Cd(2+), and confluent and dissociated cells exhibited different potencies for inhibition of uptake of 1-methyl-4-phenylpyridinium(+) (MPP(+)) by Cd(2+), MPP(+), tetraethylammonium(+), cimetidine(+), and corticosterone. In confluent HEK-hOCT2-C, largely different inhibitor potencies were obtained upon comparison of inhibition of Cd(2+) uptake, 4-[4-(dimethylamino)styryl]-N-methylpyridinium(+) (ASP(+)) uptake, and MPP(+) uptake using substrate concentrations far below the respective Km values. Employing a point mutation in the previously identified substrate binding site of rat Oct1 produced evidence that short distance allosteric effects between binding sites for substrates and inhibitors are involved in substrate-dependent inhibitor potency. Substrate-dependent inhibitor affinity is probably a common property of OCTs. To predict interactions between drugs that are transported by OCTs and inhibitory drugs, it is necessary to employ the specific transported drug rather than a model substrate for in vitro measurements.