Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2832401
Reference Type
Journal Article
Title
Vertical-flow constructed wetlands treating domestic wastewater contaminated by hydrocarbons
Author(s)
Al-Isawi, RHK; Sani, A; Almuktar, SAA; Scholz, M
Year
2015
Is Peer Reviewed?
1
Journal
Water Science and Technology
ISSN:
0273-1223
EISSN:
1996-9732
Volume
71
Issue
6
Page Numbers
938-946
Language
English
PMID
25812105
DOI
10.2166/wst.2015.054
Web of Science Id
WOS:000352978200019
Abstract
The aim was to compare the impact of different design (aggregate size) and operational (contact time, empty time and chemical oxygen demand (COD) loading) variables on the long-term and seasonal performance of vertical-flow constructed wetland filters operated in tidal flow mode before and after a one-off spill of diesel. Ten different vertical-flow wetland systems were planted with Phragmites australis (Cav.) Trin. ex Steud. (common reed). Approximately 130 g of diesel fuel was poured into four wetland filters. Before the spill, compliance with secondary wastewater treatment standards was achieved by all wetlands regarding ammonia-nitrogen (NH4-N), nitrate-nitrogen (NO3-N) and suspended solids (SS), and non-compliance was recorded for biochemical oxygen demand and ortho-phosphate-phosphorus (PO4-P). Higher COD inflow concentrations had a significantly positive impact on the treatment performance for COD, PO4-P and SS. The wetland with the largest aggregate size had the lowest mean NO3-N outflow concentration. However, the results were similar regardless of aggregate size and resting time for most variables. Clear seasonal outflow concentration trends were recorded for COD, NH4-N and NO3-N. No filter clogging was observed. The removal efficiencies dropped for those filters impacted by the diesel spill. The wetlands system shows a good performance regarding total petroleum hydrocarbon (TPH) removal.
Keywords
biodegradation; clogging; diesel contamination; Phragmites australis; reedbed; TPH
Tags
IRIS
•
Nitrate/Nitrite
Supplemental LitSearch Update 1600-2015
PubMed
WoS
New to project
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity