Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2839325
Reference Type
Journal Article
Title
Melatonin: a well-documented antioxidant with conditional pro-oxidant actions
Author(s)
Zhang, HMei; Zhang, Y
Year
2014
Is Peer Reviewed?
Yes
Journal
Journal of Pineal Research
ISSN:
0742-3098
EISSN:
1600-079X
Volume
57
Issue
2
Page Numbers
131-146
PMID
25060102
DOI
10.1111/jpi.12162
Web of Science Id
WOS:000342234000001
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine produced in many organs including the pineal gland, was initially characterized as a hormone primarily involved in circadian regulation of physiological and neuroendocrine function. Subsequent studies found that melatonin and its metabolic derivatives possess strong free radical scavenging properties. These metabolites are potent antioxidants against both ROS (reactive oxygen species) and RNS (reactive nitrogen species). The mechanisms by which melatonin and its metabolites protect against free radicals and oxidative stress include direct scavenging of radicals and radical products, induction of the expression of antioxidant enzymes, reduction of the activation of pro-oxidant enzymes, and maintenance of mitochondrial homeostasis. In both in vitro and in vivo studies, melatonin has been shown to reduce oxidative damage to lipids, proteins and DNA under a very wide set of conditions where toxic derivatives of oxygen are known to be produced. Although the vast majority of studies proved the antioxidant capacity of melatonin and its derivatives, a few studies using cultured cells found that melatonin promoted the generation of ROS at pharmacological concentrations (mu M to mM range) in several tumor and nontumor cells; thus, melatonin functioned as a conditional pro-oxidant. Mechanistically, melatonin may stimulate ROS production through its interaction with calmodulin. Also, melatonin may interact with mitochondrial complex III or mitochondrial transition pore to promote ROS production. Whether melatonin functions as a pro-oxidant under in vivo conditions is not well documented; thus, whether the reported in vitro pro-oxidant actions come into play in live organisms remains to be established.
Keywords
antioxidant; free radicals; melatonin; mitochondria; pro-oxidant; reactive nitrogen species; reactive oxygen species
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity