Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2872376
Reference Type
Journal Article
Subtype
Review
Title
Zinc-ligand interactions modulate assembly and stability of the insulin hexamer - a review
Author(s)
Dunn, MF
Year
2005
Is Peer Reviewed?
Yes
Journal
BioMetals
ISSN:
0966-0844
EISSN:
1572-8773
Volume
18
Issue
4
Page Numbers
295-303
Language
English
PMID
16158220
DOI
10.1007/s10534-005-3685-y
Web of Science Id
WOS:000231856300003
Abstract
Zinc and calcium ions play important roles in the biosynthesis and storage of insulin. Insulin biosynthesis occurs within the beta-cells of the pancreas via preproinsulin and proinsulin precursors. In the golgi apparatus, proinsulin is sequestered within Zn(2+)- and Ca(2+)-rich storage/secretory vesicles and assembled into a Zn(2+) and Ca(2+) containing hexameric species, (Zn(2+))(2)(Ca(2+))(Proin)(6). In the vesicle, (Zn(2+))(2)(Ca(2+))(Proin)(6) is converted to the insulin hexamer, (Zn(2+))(2)(Ca(2+))(In)(6), by excision of the C-peptide through the action of proteolytic enzymes. The conversion of (Zn(2+))(2)(Ca(2+))(Proin)(6)to (Zn(2+))(2)(Ca(2+))(In)(6) significantly lowers the solubility of the hexamer, causing crystallization within the vesicle. The (Zn(2+))(2)(Ca(2+))(In)(6) hexamer is an allosteric protein that undergoes ligand-mediated interconversion among three global conformation states designated T(6), T(3)R(3) and R(6). Two classes of allosteric sites have been identified; hydrophobic pockets (3 in T(3)R(3) and 6 in R(6)) that bind phenolic ligands, and anion sites (1 in T(3)R(3) and 2 in R(6)) that bind monovalent anions. The allosteric states differ widely with respect to the physical and chemical stability of the insulin subunits. Fusion of the vesicle with the plasma membrane results in the expulsion of the insulin crystals into the intercellular fluid. Dissolution of the crystals, dissociation of the hexamers to monomer and transport of monomers to the liver and other tissues then occurs via the blood stream. Insulin action then follows binding to the insulin receptors. The role of Zn(2+) in the assembly, structure, allosteric properties, and dynamic behavior of the insulin hexamer will be discussed in relation to biological function.
Keywords
allosteric transitions; calcium; hexamer; insulin; zinc
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity