Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2872445
Reference Type
Journal Article
Subtype
Review
Title
Calcitonin gene-related peptide and hypertension
Author(s)
Deng, PY; Li, YH
Year
2005
Is Peer Reviewed?
1
Journal
Peptides
ISSN:
0196-9781
Volume
26
Issue
9
Page Numbers
1676-1685
Language
English
PMID
16112410
DOI
10.1016/j.peptides.2005.02.002
Web of Science Id
WOS:000232039600021
Abstract
Capsaicin-sensitive sensory nerves participate in the regulation of cardiovascular functions both in the normal state and the pathophysiology of hypertension through the actions of potent vasodilator neuropeptides, including calcitonin gene-related peptide (CGRP). CGRP, a very potent vasodilator, is the predominant neurotransmitter in capsaicin-sensitive sensory nerves, and plays an important role in the initiation, progression and maintenance of hypertension via: (1) the alterations in its synthesis and release and/or in vascular sensitivity response to it; (2) interactions with pro-hypertensive systems, including renin-angiotensin-aldosterone system, sympathetic nervous system and endothelin system; and (3) anti-hypertrophy and anti-proliferation of vascular smooth muscle cells. The decrease in CGRP synthesis and release contributes to the elevated blood pressure, as shown in the spontaneously hypertensive rats, alpha-CGRP knockout mice, Dahl-salt or phenol-induced hypertensive rats. In contrast, the increase in CGRP levels or the enhancement of vascular sensitivity response to CGRP plays a beneficial compensatory depressor role in the development of hypertension, as shown in deoxycorticosterone-salt, sub-total nephrectomy-salt, N(omega)-nitro-L-arginine methyl ester or two-kidney, one-clip models of hypertension in rats. We found that rutaecarpine causes a sustained depressor action by stimulation of CGRP synthesis and release via activation of vanilloid receptor subtype 1 (VR1) in hypertensive rats, which reveals the therapeutic implications of VR1 agonists for treatment of hypertension.
Keywords
calcitonin gene-related peptide (CGRP); hypertension; sensory nerve; renin-angiotensin-aldosterone system; sympathetic nervous system; endothelin
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity