Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2889822
Reference Type
Journal Article
Title
Synthesis and reactivity of a (mu-1,1-hydroperoxo)(mu-hydroxo)dicopper(II) complex: ligand hydroxylation by a bridging hydroperoxo ligand
Author(s)
Itoh, K; Hayashi, H; Furutachi, H; Matsumoto, T; Nagatomo, S; Tosha, T; Terada, S; Fujinami, S; Suzuki, M; Kitagawa, T
Year
2005
Is Peer Reviewed?
Yes
Journal
Journal of the American Chemical Society
ISSN:
0002-7863
EISSN:
1520-5126
Volume
127
Issue
14
Page Numbers
5212-5223
Language
English
PMID
15810857
DOI
10.1021/ja047437h
Abstract
A new tetradentate tripodal ligand (L3) containing sterically bulky imidazolyl groups was synthesized, where L3 is tris(1-methyl-2-phenyl-4-imidazolylmethyl)amine. Reaction of a bis(mu-hydroxo)dicopper(II) complex, [Cu2(L3)2(OH)2]2+ (1), with H2O2 in acetonitrile at -40 degrees C generated a (mu-1,1-hydroperoxo)dicopper(II) complex [Cu2(L3)2(OOH)(OH)]2+ (2), which was characterized by various physicochemical measurements including X-ray crystallography. The crystal structure of 2 revealed that the complex cation has a Cu2(mu-1,1-OOH)(mu-OH) core and each copper has a square pyramidal structure having an N3O2 donor set with a weak ligation of a tertiary amine nitrogen in the apex. Consequently, one pendant arm of L3 in 2 is free from coordination, which produces a hydrophobic cavity around the Cu2(mu-1,1-OOH)(mu-OH) core. The hydrophobic cavity is preserved by hydrogen bondings between the hydroperoxide and the imidazole nitrogen of an uncoordinated pendant arm in one side and the hydroxide and the imidazole nitrogen of an uncoordinated pendant arm in the other side. The hydrophobic cavity significantly suppresses the H/D and 16O/18O exchange reactions in 2 compared to that in 1 and stabilizes the Cu2(mu-1,1-OOH)(mu-OH) core against decomposition. Decomposition of 2 in acetonitrile at 0 degrees C proceeded mainly via disproportionation of the hydroperoxo ligand and reduction of 2 to [Cu(L3)]+ by hydroperoxo ligand. In contrast, decomposition of a solid sample of 2 at 60 degrees C gave a complex having a hydroxylated ligand [Cu2(L3)(L3-OH)(OH)2]2+ (2-(L3-OH)) as a main product, where L3-OH is an oxidized ligand in which one of the methylene groups of the pendant arms is hydroxylated. ESI-TOF/MS measurement showed that complex 2-(L3-OH) is stable in acetonitrile at -40 degrees C, whereas warming 2-(L3-OH) at room temperature resulted in the N-dealkylation from L3-OH to give an N-dealkylated ligand, bis(1-methyl-2-phenyl-4-imidazolylmethyl)amine (L2) in approximately 80% yield based on 2, and 1-methyl-2-phenyl-4-formylimidazole (Phim-CHO). Isotope labeling experiments confirmed that the oxygen atom in both L3-OH and Phim-CHO come from OOH. This aliphatic hydroxylation performed by 2 is in marked contrast to the arene hydroxylation reported for some (mu-1,1-hydroperoxo)dicopper(II) complexes with a xylyl linker.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity