Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2953412
Reference Type
Journal Article
Title
Effect of cigarette smoke on oral peroxidase activity in human saliva: role of hydrogen cyanide
Author(s)
Klein, I; Nagler, RM; Toffler, R; van Der Vliet, A; Reznick, AZ
Year
2003
Is Peer Reviewed?
Yes
Journal
Free Radical Biology and Medicine
ISSN:
0891-5849
EISSN:
1873-4596
Volume
35
Issue
11
Page Numbers
1448-1452
Language
English
PMID
14642392
DOI
10.1016/j.freeradbiomed.2003.08.001
Web of Science Id
WOS:000186657500011
Abstract
Peroxidase activity in human saliva is composed of salivary peroxidase (80%), of salivary glandular origin, and myeloperoxidase (20%), of leukocyte origin. The term oral peroxidase (OPO) is used here to denote the total activity of both peroxidase species. Using the 2-nitrobenzoic acid-thiocyanate assay, OPO activity was measured in the saliva of nonsmokers after exposure to gas-phase cigarette smoke (CS) in an in vitro system using three puffs of CS in 1 h. A marked decrease of 76% of activity was observed following three puffs of CS. In order to elucidate the mechanism by which CS caused loss of OPO activity, several oxidants and antioxidants were applied to saliva in vitro in the presence and absence of CS. No protection for CS-induced loss of OPO activity occurred in the presence of glutathione, N-acetylcysteine, ascorbic acid, or Desferal. Exposure of saliva to purified aldehydes present in CS did not significantly affect OPO loss of activity. Similarly, ascorbic acid in the presence of FeCl(3) and nicotine also had no effect on OPO activity. Exposure of OPO to cyanate at levels present in CS caused a 65-70% loss of OPO activity, which was reversible after 24 h of dialysis. Moreover, hydroxocobalamin, a known cyanate chelator, could prevent CS- and potassium cyanide-induced inactivation of OPO by 70-90%. The results show that hydrogen cyanide, known to be present in microgram amounts per cigarette, is likely to be the species in CS responsible for loss of salivary OPO activity. The finding of reduced salivary OPO levels after CS exposure may represent a contributory mechanism for CS-related compromises in antimicrobial defenses in the aerodigestive tract.
Keywords
cigarette smoke; hydrogen cyanide; hydroxocobalamin; oral peroxidase; free radicals
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity