Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2970675
Reference Type
Journal Article
Title
Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis
Author(s)
Milner, MJ; Seamon, J; Craft, E; Kochian, LV
Year
2013
Is Peer Reviewed?
Yes
Journal
Journal of Experimental Botany
ISSN:
0022-0957
EISSN:
1460-2431
Volume
64
Issue
1
Page Numbers
369-381
Language
English
PMID
23264639
DOI
10.1093/jxb/ers315
Abstract
A better understanding of the role of the Arabidopsis ZIP family of micronutrient transporters is necessary in order to advance our understanding of plant Zn, Fe, Mn, and Cu homeostasis. In the current study, the 11 Arabidopsis ZIP family members not yet well characterized were first screened for their ability to complement four yeast mutants defective in Zn, Fe, Mn, or Cu uptake. Six of the Arabidopsis ZIP genes complemented a yeast Zn uptake-deficient mutant, one was able partially to complement a yeast Fe uptake-deficient mutant, six ZIP family members complemented an Mn uptake-deficient mutant, and none complemented the Cu uptake-deficient mutant. AtZIP1 and AtZIP2 were then chosen for further study, as the preliminary yeast and in planta analysis suggested they both may be root Zn and Mn transporters. In yeast, AtZIP1 and AtZIP2 both complemented the Zn and Mn uptake mutants, suggesting that they both may transport Zn and/or Mn. Expression of both genes is localized to the root stele, and AtZIP1 expression was also found in the leaf vasculature. It was also found that AtZIP1 is a vacuolar transporter, while AtZIP2 is localized to the plasma membrane. Functional studies with Arabidopsis AtZIP1 and AtZIP2 T-DNA knockout lines suggest that both transporters play a role in Mn (and possibly Zn) translocation from the root to the shoot. AtZIP1 may play a role in remobilizing Mn from the vacuole to the cytoplasm in root stellar cells, and may contribute to radial movement to the xylem parenchyma. AtZIP2, on the other hand, may mediate Mn (and possibly Zn) uptake into root stellar cells, and thus also may contribute to Mn/Zn movement in the stele to the xylem parenchyma, for subsequent xylem loading and transport to the shoot.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity