Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2987568
Reference Type
Journal Article
Title
Kinetics of nirS expression (cytochrome cd1 nitrite reductase) in Pseudomonas stutzeri during the transition from aerobic respiration to denitrification: evidence for a denitrification-specific nitrate- and nitrite-responsive regulatory system
Author(s)
Härtig, E; Zumft, WG
Year
1999
Is Peer Reviewed?
Yes
Journal
Journal of Bacteriology
ISSN:
0021-9193
EISSN:
1098-5530
Volume
181
Issue
1
Page Numbers
161-166
Language
English
PMID
9864326
Web of Science Id
WOS:000077715600023
Abstract
After shifting an oxygen-respiring culture of Pseudomonas stutzeri to nitrate or nitrite respiration, we directly monitored the expression of the nirS gene by mRNA analysis. nirS encodes the 62-kDa subunit of the homodimeric cytochrome cd1 nitrite reductase involved in denitrification. Information was sought about the requirements for gene activation, potential regulators of such activation, and signal transduction pathways triggered by the alternative respiratory substrates. We found that nirS, together with nirT and nirB (which encode tetra- and diheme cytochromes, respectively), is part of a 3.4-kb operon. In addition, we found a 2-kb monocistronic transcript. The half-life of each of these messages was approximately 13 min in denitrifying cells with a doubling time of around 2.5 h. When the culture was subjected to a low oxygen tension, we observed a transient expression of nirS lasting for about 30 min. The continued transcription of the nirS operon required the presence of nitrate or nitrite. This anaerobically manifested N-oxide response was maintained in nitrate sensor (NarX) and response regulator (NarL) knockout strains. Similar mRNA stability and transition kinetics were observed for the norCB operon, encoding the NO reductase complex, and the nosZ gene, encoding nitrous oxide reductase. Our results suggest that a nitrate- and nitrite-responsive regulatory circuit independent of NarXL is necessary for the activation of denitrification genes.
Tags
IRIS
•
Nitrate/Nitrite
Supplemental LitSearch Update 1600-2015
PubMed
WoS
New to project
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity