Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3072903
Reference Type
Journal Article
Title
Field Treatment To Stimulate an Oil Well in an Offshore Sandstone Reservoir Using a Novel, Low-Corrosive, Environmentally Friendly Fluid
Author(s)
Nasr-El-Din, HA; Dana, H; Tomos, V; Stanitzek, T; de Wolf, CA; Alex, A
Year
2015
Is Peer Reviewed?
No
Journal
Journal of Canadian Petroleum Technology
ISSN:
0021-9487
Publisher
SPE-SOC PETROLEUM ENGINEERS, CANADA
Location
CALGARY
Volume
54
Issue
5
Page Numbers
289-297
Web of Science Id
WOS:000364556900005
Abstract
Acidizing sandstone formations is a real challenge for the oil and gas industry. Fines migration, sand production, and additional damages caused by precipitation are some of the common concerns related to sandstone treatments. Furthermore, the complexities of sandstone formations require a mixture of acids and loadings of several additives. The environmentally friendly chelating agent glutamic acid N,N-diacetic acid (GLDA) was used successfully to stimulate deep gas wells in carbonate reservoirs. It was tested extensively in the laboratory to stimulate sandstone cores with various mineralogies. Significant permeability improvements were reported in previous papers over a wide range of conditions. In this paper, the result of the first field application is evaluated with a fluid based on this chelating agent to acidize an offshore, sour oil well in a sandstone reservoir. The field treatment included pumping a preflush of xylene to remove oil residues and any possible asphaltene deposited in the wellbore region, followed by the main stage that contained 25 wt% GLDA, a corrosion inhibitor, and a water-wetting surfactant. The treatment fluids were displaced into the formation by pumping diesel. The treatment fluids were allowed to soak for 6 hours, then the well was put into production, and samples of flowback fluids were collected. The concentrations of key cations were determined using inductively coupled plasma, and the chelant concentration was measured using a titration method with ferric chloride solutions. Corrosion tests conducted on low-carbon-steel tubulars indicated that this chelant has low corrosion rates under bottomhole conditions. No corrosion-inhibitor intensifier was needed. The treatment was applied in the field without encountering any operational problems. A significant gain in oil production was achieved without causing sand production, or fines migration. Analysis of flowback samples confirmed the ability of the chelating-agent solution to dissolve various types of carbonates, oxides, and sulphides, while keeping the dissolved species in solution without causing unwanted precipitation. Unlike previous treatments conducted on this well, where 15 wt% hydrochloric acid (HCl) or 13.5 wt%/1.5 wt% HCl/hydrofluoric acid (HF) acids were used, the concentrations of iron and manganese in the flowback samples were negligible, confirming the low corrosion rates of well tubulars when using GLDA solutions.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity