Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3075538
Reference Type
Journal Article
Title
Dexamethasone phosphate-loaded folate-conjugated polymeric nanoparticles for selective delivery to activated macrophages and suppression of inflammatory responses
Author(s)
Cao, J; Naeem, M; Noh, JinKi; Lee, EunHee; Yoo, JinW
Year
2015
Is Peer Reviewed?
1
Journal
Macromolecular Research
ISSN:
1598-5032
Volume
23
Issue
5
Page Numbers
485-492
DOI
10.1007/s13233-015-3065-6
Web of Science Id
WOS:000354393500011
Abstract
Activated macrophages play a central role in the pathology of inflammatory diseases by secreting pro-inflammatory cytokines. In this study, we have developed folate-conjugated dexamethasone phosphate (DP)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) that can selectively target to activated macrophages for alleviation of inflammatory responses. DP was loaded into PLGA nanoparticles in an amorphous form using an ionic interaction between DP, zinc, and PLGA. Folic acid (FA) was used as a targeting ligand for activated macrophages and conjugated onto DPNPs (FA-DPNPs). The mean particle size of DPNPs and FA-DPNPs was 126 +/- 36 and 133 +/- 28 nm, respectively. The zeta potential of DPNPs and FA-DPNPs were -13.5 +/- 0.4 mV and -14.9 +/- 0.9 mV, respectively. Sustained and controlled DP release over 48 hours from DPNPs and FA-DPNPs was observed. The low cellular uptake of both DPNPs and FA-DPNPs was observed in normal RAW264.7 macrophages, whereas significantly higher cellular uptake of FA-DPNPs was observed as compared to DPNPs in activated RAW264.7 macrophages. The production of pro-inflammatory cytokines (IL-6 and TNF-alpha) and nitric oxide (NO) from activated macrophages was inhibited more significantly by FA-DPNPs than by free DP and DPNPs. Taken together, DP-loaded nanoparticles, especially when conjugated with FA, were selectively internalized by activated macrophages and effectively suppressed inflammatory responses. DP loaded folate-conjugated PLGA nanoparticles presented in this study may offer a promising approach of targeted delivery to activated macrophages for the treatment of inflammatory diseases.
Keywords
targeted polymeric nanoparticles; poly(D,L-lactic-co-glycolic acid); activated macrophages; dexamethasone sodium phosphate; inflammatory responses
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity