Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3088945
Reference Type
Journal Article
Title
omega-conotoxin GVIA alters gating charge movement of N-type (CaV2.2) calcium channels
Author(s)
Yarotskyy, V; Elmslie, KS
Year
2009
Is Peer Reviewed?
Yes
Journal
Journal of Neurophysiology
ISSN:
0022-3077
EISSN:
1522-1598
Volume
101
Issue
1
Page Numbers
332-340
Language
English
PMID
18971294
DOI
10.1152/jn.91064.2008
Web of Science Id
WOS:000262410800029
Abstract
omega-conotoxin GVIA (omegaCTX) is a specific blocker of N-type calcium (CaV2.2) channels that inhibits neuropathic pain. While the toxin appears to be an open channel blocker, we show that N-channel gating charge movement is modulated. Gating currents were recorded from N-channels expressed along with beta2a and alpha2delta subunits in HEK293 cells in external solutions containing either lanthanum and magnesium (La-Mg) or 5 mM Ca2+ plus omegaCTX (omegaCTX-Ca). A comparison showed that omegaCTX induced a 10-mV right shift in the gating charge versus voltage (Q-V) relationship, smaller off-gating current time constant (tau Q(Off)), a lower tau Q(Off) voltage dependence, and smaller on-gating current (Q(On)) tau. We also examined gating current in La-Mg plus omegaCTX and found no significant difference from that in omegaCTX-Ca; this demonstrates that the modulation was induced by the toxin. A model with strongly reduced open-state occupancy reproduced the omegaCTX effect on gating current and showed that the gating modulation alone would inhibit N-current by 50%. This mechanism of N-channel inhibition could be exploited to develop novel analgesics that induce only a partial block of N-current, which may limit some of the side effects associated with the toxin analgesic currently approved for human use (i.e., Prialt).
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity