Health & Environmental Research Online (HERO)


Print Feedback Export to File
3113413 
Journal Article 
The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations 
Meharg, AA 
2003 
Mycological Research
ISSN: 0953-7562
EISSN: 1469-8102 
107 
1253-1265 
Mycorrhizal associations, including ericoid, arbuscular and ecto-mycorrhizas, are found colonising highly metal contaminated soils. How do rnycorrhizal fungi achieve metal resistance, and does this metal resistance confer enhanced metal resistance to plant symbionts? These are the questions explored in this review by considering the mechanistic basis of mycorrhizal adaptation to metal cations. Recent molecular and physiological studies are discussed. The review reappraises what constitutes metal resistance in the context of mycorrhizal associations and sets out the constitutive and adaptive mechanisms available for rnycorrhizas to adapt to contaminated sites.



The only direct evidence of mycorrhizal adaptation to metal cation pollutants is the exudation of organic acids to alter pollutant availability in the rhizosphere. This is not to say that other mechanism of adaptation do not exist, but conclusive evidence of adaptive mechanisms of tolerance are lacking. For constitutive mechanisms of resistance, there is much more evidence, and mycorrhizas possess the same constitutive mechanisms for dealing with metal contaminants as other organisms.



Rhizosphere chemistry is critical to understanding the interactions of mycorrhizas with polluted soils. Soil pH, mineral weathering, pollutant precipitation with plant excreted organic acids all may have a key role in constitutive and adaptive tolerance of mycorrhizal associations present on contaminated sites.



The responses of mycorrhizal fungi to toxic metal cations are diverse. This, linked to the fact that mycorrhizal diversity is normally high, even on highly contaminated sites, suggests that this diversity may have a significant role in colonisation of contaminated sites by mycorrhizas. That is, the environment selects for the fungal community that can best cope with the environment, so having diverse physiological attributes will enable colonisation of a wide range of metal contaminated micro-habitats.