Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3160771
Reference Type
Journal Article
Title
Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation
Author(s)
Ingle, KA; Kain, V; Goel, M; Prabhu, SD; Young, ME; Halade, GV
Year
2015
Is Peer Reviewed?
Yes
Journal
American Journal of Physiology: Heart and Circulatory Physiology
ISSN:
0363-6135
EISSN:
1522-1539
Volume
309
Issue
11
Page Numbers
H1827-H1836
Language
English
PMID
26432841
DOI
10.1152/ajpheart.00608.2015
Abstract
The mammalian circadian clock consists of multiple transcriptional regulators that coordinate biological processes in a time-of-day-dependent manner. Cardiomyocyte-specific deletion of the circadian clock component, Bmal1 (aryl hydrocarbon receptor nuclear translocator-like protein 1), leads to age-dependent dilated cardiomyopathy and decreased lifespan in mice. We investigated whether cardiomyocyte-specific Bmal1 knockout (CBK) mice display early alterations in cardiac diastolic function, extracellular matrix (ECM) remodeling, and inflammation modulators by investigating CBK mice and littermate controls at 8 and 28 wk of age (i.e., prior to overt systolic dysfunction). Left ventricles of CBK mice exhibited (P < 0.05): 1) progressive abnormal diastolic septal annular wall motion and reduced pulmonary venous flow only at 28 wk of age; 2) progressive worsening of fibrosis in the interstitial and endocardial regions from 8 to 28 wk of age; 3) increased (>1.5 fold) expression of collagen I and III, as well as the matrix metalloproteinases MMP-9, MMP-13, and MMP-14 at 28 wk of age; 4) increased transcript levels of neutrophil chemotaxis and leukocyte migration genes (Ccl2, Ccl8, Cxcl2, Cxcl1, Cxcr2, Il1β) with no change in Il-10 and Il-13 genes expression; and 5) decreased levels of 5-LOX, HO-1 and COX-2, enzymes indicating impaired resolution of inflammation. In conclusion, genetic disruption of the cardiomyocyte circadian clock results in diastolic dysfunction, adverse ECM remodeling, and proinflammatory gene expression profiles in the mouse heart, indicating signs of early cardiac aging in CBK mice.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity