Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3172487
Reference Type
Journal Article
Title
The Blood-Brain Barrier Permeability of Lignans and Malabaricones from the Seeds of Myristica fragrans in the MDCK-pHaMDR Cell Monolayer Model
Author(s)
Wu, N; Xu, W; Cao, GY; Yang, YF; Yang, XB; Yang, XW
Year
2016
Is Peer Reviewed?
1
Journal
Molecules
ISSN:
1420-3049
Volume
21
Issue
2
Language
English
PMID
26805808
DOI
10.3390/molecules21020134
Web of Science Id
WOS:000371895900052
Abstract
The blood-brain barrier (BBB) permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg) were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (Papp) were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with Papp values at 10(-8)-10(-6) cm/s; those of 8-O-4'-neolignan and tetrahydrofuran-lignan were at 10(-6)-10(-5) cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their Papp values were at 10(-8)-10(-7) cm/s. To 5-methoxy-dehydrodiisoeugenol (2), erythro-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-propan-1-ol acetate (6), verrucosin (8), and nectandrin B (9), an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1), myrislignan (7) and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg.
Keywords
blood-brain barrier; MDCK-pHaMDR; Myristicaceae; nutmeg; Myristica fragrans; lignans; malabaricones
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity