Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3226756
Reference Type
Journal Article
Title
Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro
Author(s)
Cascella, R; Conti, S; Mannini, B; Li, X; Buxbaum, JN; Tiribilli, B; Chiti, F; Cecchi, C
Year
2013
Is Peer Reviewed?
1
Journal
Biochimica et Biophysica Acta
ISSN:
0006-3002
EISSN:
1878-2434
Publisher
ELSEVIER SCIENCE BV
Location
AMSTERDAM
Volume
1832
Issue
12
Page Numbers
2302-2314
Language
English
PMID
24075940
DOI
10.1016/j.bbadis.2013.09.011
Web of Science Id
WOS:000327567600041
Abstract
Although human transthyretin (TTR) is associated with systemic amyloidoses, an anti-amyloidogenic effect that prevents Aβ fibril formation in vitro and in animal models has been observed. Here we studied the ability of three different types of TTR, namely human tetramers (hTTR), mouse tetramers (muTTR) and an engineered monomer of the human protein (M-TTR), to suppress the toxicity of oligomers formed by two different amyloidogenic peptides/proteins (HypF-N and Aβ42). muTTR is the most stable homotetramer, hTTR can dissociate into partially unfolded monomers, whereas M-TTR maintains a monomeric state. Preformed toxic HypF-N and Aβ42 oligomers were incubated in the presence of each TTR then added to cell culture media. hTTR, and to a greater extent M-TTR, were found to protect human neuroblastoma cells and rat primary neurons against oligomer-induced toxicity, whereas muTTR had no protective effect. The thioflavin T assay and site-directed labeling experiments using pyrene ruled out disaggregation and structural reorganization within the discrete oligomers following incubation with TTRs, while confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and hTTR, particularly M-TTR. Moreover, atomic force microscopy (AFM), light scattering and turbidimetry analyses indicated that larger assemblies of oligomers are formed in the presence of M-TTR and, to a lesser extent, with hTTR. Overall, the data suggest a generic capacity of TTR to efficiently neutralize the toxicity of oligomers formed by misfolded proteins and reveal that such neutralization occurs through a mechanism of TTR-mediated assembly of protein oligomers into larger species, with an efficiency that correlates inversely with TTR tetramer stability.
Keywords
Molecular chaperone; TTR protective effect; TTR-mediated oligomer clustering
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity