Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3415652
Reference Type
Journal Article
Title
DEXH Box RNA Helicase-Mediated Mitochondrial Reactive Oxygen Species Production in Arabidopsis Mediates Crosstalk between Abscisic Acid and Auxin Signaling
Author(s)
He, J; Duan, Y; Hua, D; Fan, G; Wang, Li; Liu, Yue; Chen, Z; Han, L; Qu, L; Gong, Z
Year
2012
Is Peer Reviewed?
1
Journal
Plant Cell
ISSN:
1040-4651
EISSN:
1532-298X
Volume
24
Issue
5
Page Numbers
1815-1833
Language
English
PMID
22652060
DOI
10.1105/tpc.112.098707
Web of Science Id
WOS:000306105400012
Abstract
It is well known that abscisic acid (ABA) promotes reactive oxygen species (ROS) production through plasma membrane-associated NADPH oxidases during ABA signaling. However, whether ROS from organelles can act as second messengers in ABA signaling is largely unknown. Here, we identified an ABA overly sensitive mutant, abo6, in a genetic screen for ABA-mediated inhibition of primary root growth. ABO6 encodes a DEXH box RNA helicase that is involved in regulating the splicing of several genes of complex I in mitochondria. The abo6 mutant accumulated more ROS in mitochondria, as established using a mitochondrial superoxide indicator, circularly permuted yellow fluorescent protein. Two dominant-negative mutations in ABA insensitive1 (abi1-1) and abi2-1 greatly reduced ROS production in mitochondria. The ABA sensitivity of abo6 can also be compromised by the atrbohF mutation. ABA-mediated inhibition of seed germination and primary root growth in abo6 was released by the addition of reduced GSH and exogenous auxin to the medium. Expression of auxin-responsive markers ProDR5:GUS (for synthetic auxin response element D1-4 with site-directed mutants in the 5'-end from soybean):β-glucuronidase) and Indole-3-acetic acid inducible2:GUS was greatly reduced by the abo6 mutation. Hence, our results provide molecular evidence for the interplay between ABA and auxin through the production of ROS from mitochondria. This interplay regulates primary root growth and seed germination in Arabidopsis thaliana.
Keywords
; Arabidopsis; Arabidopsis thaliana; Glycine max/
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity