Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3428300
Reference Type
Journal Article
Title
The combustion of biomass - The impact of its types and combustion technologies on the emission of nitrogen oxide
Author(s)
Mladenovic, MR; Dakic, DV; Nemoda, SD; Paprika, MJ; Komatina, MS; Repic, BS; Eric, AM
Year
2016
Is Peer Reviewed?
Yes
Journal
Hemijska Industrija
ISSN:
0367-598X
Volume
70
Issue
3
Page Numbers
287-298
DOI
10.2298/HEMIND150409033M
Web of Science Id
WOS:000380756800006
Abstract
Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the greenhouse gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge), using different combustion technologies (fluidized bed and cigarette combustion), with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition - it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO.
Keywords
fluidized bed; cigarette combustion; biomass; NOx
Tags
•
LitSearch-NOx (2024)
Keyword Search
Atmospheric
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity