Health & Environmental Research Online (HERO)


Print Feedback Export to File
3456397 
Journal Article 
Inorganic Salt Interference on CO2(+) in Aerodyne AMS and ACSM Organic Aerosol Composition Studies 
Pieber, SM; El Haddad, I; Slowik, JG; Canagaratna, MR; Jayne, JT; Platt, SM; Bozzetti, C; Daellenbach, KR; Fröhlich, R; Vlachou, A; Klein, F; Dommen, J; Miljevic, B; Jiménez, JL; Worsnop, DR; Baltensperger, U; Prévôt, AS 
2016 
Environmental Science & Technology
ISSN: 0013-936X
EISSN: 1520-5851 
50 
19 
10494-10503 
English 
Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO2(+) fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO2(+) signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH4NO3) causes a median CO2(+) interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH4NO3, while the ammonium sulfate ((NH4)2SO4) induced interference was 3-10 times lower. Propagation of the CO2(+) interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f44. The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems. 
IRIS
• Nitrate/Nitrite
     Literature Search Update, 1/1/2016 – 12/31/2017
          PubMed
          WoS
     Broad LitSearch 2016/1/1 - 2017/12/5
          Refs found by LitSearch but not ATSDR/IARC
          Sodium, Potassium, & Ammonium Compounds
          PubMed
          WoS
     Refs found only by 2017 LitSearch or Citation Mapping
     Ref Types 12/2017
          All Others
• LitSearch-NOx (2024)
     Forward Citation Search
          Epidemiology
               Results
                    Mortality-LT
                         PubMed
                         WoS
     Keyword Search
          Exposure
               PIA
                    WoS
                    PubMed
               Error Sources
                    WoS