Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3580298
Reference Type
Journal Article
Title
Kinetics of hydrolysis of benzaldehyde dimethyl acetal over Amberlite IR-120
Author(s)
Altiokka, MR; Hosgun, HL
Year
2007
Is Peer Reviewed?
Yes
Journal
Industrial and Engineering Chemistry Research
ISSN:
0888-5885
EISSN:
1520-5045
Volume
46
Issue
4
Page Numbers
1058-1062
Language
English
DOI
10.1021/ie060716o
Web of Science Id
WOS:000244000400009
URL
http:///pubs.acs.org/doi/abs/10.1021/ie060716o
Exit
Abstract
The kinetics of the hydrolysis of benzaldehyde dimethyl acetal has been studied using a circulated batch reactor in dioxane. Amberlite IR-120, in its acidic form, was used as a heterogeneous catalyst. Kinetic expression for the formation of acetal was also determined since the reaction is reversible. In the temperature range 298-328 K, the equilibrium constant for hydrolysis of benzaldehyde dimethyl acetal was found to be K-e = exp(8.67 - 1880/T) mol center dot L-1 where T is the absolute temperature in Kelvin. In the presence of catalyst, the reaction has been found to occur between an adsorbed water molecule and a molecule of acetal in the bulk phase (Eley-Rideal model). It was also observed that benzaldehyde adsorbed by the catalyst has an inhibiting effect on the reaction rate. From this model it was concluded that the reaction is a "surface reaction control" and its rate will be given by the expression -r(W) = [k(m/V)(CACW - ((CBACM2)/K-e))]/[1 + KBACBA + KWCW] where concentrations are in the unit of mol center dot L-1. It was shown that temperature dependency of the hydrolysis rate constant can be given by k = exp(9.4 - 4915/T) L-2 center dot(g-dry resin)(-1)center dot mol(-1)center dot min(-1). The adsorption equilibrium constants related to benzaldehyde and water were also calculated to be K-BA = exp(7292/T - 24.9) L center dot mol(-1), K-W = exp(1296/T - 4.4) L center dot mol(-1), respectively.
Keywords
Water Resources Abstracts; Aqualine Abstracts; Temperature; Catalysts; Model Studies; Equilibrium; Hydrolysis; Adsorption; Kinetics; Batch Reactors; AQ 00001:Water Resources and Supplies; SW 6010:Structures
Tags
OPPT REs
•
OPPT_1,4-Dioxane_C. Engineering
Data screening total
Screening: Excluded
•
OPPT_1,4-Dioxane_D. Exposure
Total – title/abstract screening
Off topic
Supplemental Search
•
OPPT_1,4-Dioxane_E. Fate
Total – title/abstract screening
Off topic
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity