Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3607504
Reference Type
Journal Article
Title
Supersaturated polymeric micelles for oral cyclosporine A delivery: The role of Soluplus-sodium dodecyl sulfate complex
Author(s)
Xia, D; Yu, H; Tao, J; Zeng, J; Zhu, Q; Zhu, C; Gan, Y
Year
2016
Is Peer Reviewed?
Yes
Journal
Colloids and Surfaces B: Biointerfaces
ISSN:
0927-7765
EISSN:
1873-4367
Volume
141
Page Numbers
301-310
Language
English
PMID
26866892
DOI
10.1016/j.colsurfb.2016.01.047
Web of Science Id
WOS:000374197700035
Abstract
Our previous study demonstrated that the retention of drug in the hydrophobic core of Soluplus micelle greatly impeded drug absorption from gastrointestinal tract. Using supersaturated polymeric micelles can improve drug release, however, insufficient maintaining of supersaturation of drug is still unfavorable for drug absorption. Here, we report adding small amount of small molecule, sodium dodecyl sulfate (SDS), to Soluplus solution can form a Soluplus-SDS complex. This complex not only showed a higher solubilization capability for the model drug cyclosporine A (CsA), but also maintained a longer period of and higher supersaturation than was achieved with Soluplus alone. The Soluplus-SDS interactions were characterized by analyzing surface tension, small-angle X-ray scattering (SAXS), fluorescence spectra, and nuclear magnetic resonance spectroscopy. The results demonstrated that the formation of Soluplus-SDS complex via SDS adsorption on hydrophobic segments of Soluplus, which have more hydrophobic domain than that of Soluplus micelle, contributed significantly to the solubilization and stabilization of supersaturated CsA. Using this amphiphilic copolymer-small molecule surfactant system, the cellular uptake and rat in vivo absorption of CsA were more effectively achieved than pure Soluplus. The area under the plasma concentration-time curve (AUC) and the maximal plasma concentration (Cmax) achieved by CsA-loaded Soluplus-SDS complex were 1.58- and 1.8-times higher than the corresponding values for CsA-loaded pure Soluplus, respectively. This study highlighted the benefits of Soluplus-SDS complex for optimizing the solubilization and oral absorption of a drug with low aqueous solubility.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity