Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3697298
Reference Type
Journal Article
Title
MnO2 Nanowire Embedded Hydrogen Peroxide Monopropellant MEMS Thruster
Author(s)
Kundu, P; Sinha, AK; Bhattacharyya, TK; Das, S
Year
2013
Is Peer Reviewed?
Yes
Journal
I E E E Journal of Microelectromechanical Systems
ISSN:
1057-7157
Volume
22
Issue
2
Page Numbers
406-417
DOI
10.1109/JMEMS.2012.2226929
Web of Science Id
WOS:000317191700020
Abstract
Feasibility of chemically synthesized MnO2 nanowire catalyst embedded silicon microelectromechanical systems (MEMS) H2O2 monopropellant microthruster has been demonstrated. Due to exothermic reaction process, sustenance of thrust generation does not require any heating of propellant thus minimizing electrical power requirement. The thruster device integrates inlet nozzle, microchannel, MnO2 nanowire embedded reaction chamber, in-plane exit nozzle and a microheater in the silicon layer. Nozzle configuration and catalyst bed was designed using simple analytical equations to achieve complete decomposition of H2O2 and maximum thrust force by controlling the propellant flow. Simulation of hydrogen peroxide decomposition process was carried out to evaluate the thermo-chemical characteristics. The MnO2 nanowire has been obtained using a low-cost synthesis process and characterized using field emission scanning electron microscopy, Energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction studies. Thruster fabrication using micromachining process and its testing have been briefly described. The device is capable to produce 1 mN thrust and specific impulse of 180 s using 50 wt.% concentrated H2O2 of flow rate 1.25 mg/s with total ignition energy of 44 J required for preheating the catalyst bed. Detailed thrust measurement was carried out with propellant mass flow rate for different throat area of exit nozzle, and the results were interpreted with theoretical model.
Keywords
Microelectromechanical systems (MEMS); micropropulsion; microthruster; monopropellant; nanowire; thrust
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity