Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3720908
Reference Type
Journal Article
Title
Elemental Abundance Analyses with DAO Spectrograms. XXXIV. A Three-Dimensional Graphical Examination of the Elemental Abundances of the Mercury-Manganese and Metallic-Line Stars
Author(s)
Yuce, K; Adelman, SJ
Year
2014
Is Peer Reviewed?
Yes
Journal
Astronomical Society of the Pacific. Publications
ISSN:
0004-6280
EISSN:
1538-3873
Volume
126
Issue
938
Page Numbers
345-358
Web of Science Id
WOS:000336193800004
Abstract
Detailed analyses of high-dispersion, high signal-to-noise spectra enable astronomers to infer many stellar properties. We study nonmagnetic normal and chemically peculiar B, A, and F stars to understand the details of their optical region abundances via graphical techniques using two kinds of figures for 32 elements. By characterizing the anomalies of the mercury-manganese (HgMn) and the metallic-line (Am) stars, we provide major theoretical tests. We confirmed the known Hg dichotomy between HgMn stars, which are greatly overabundant, and the Am stars with normal abundances. Further P, Ga, Xe, Pt, and Au values were only overabundant for some HgMn stars, and lines of the rare earth elements, such as Sm and Eu, were seen only in some Am and normal stars. These observations might be due in some cases to changes in the major ionization state of atoms in the relevant stellar atmosphere. That some HgMn stars with large Ga overabundances have positions close in the H-R diagram to HgMn stars that lack Ga II lines in the optical region suggests a dichotomy similar to Hg with a boundary close to, but not identical, to that for Hg. The spread of the abundance anomalies for a given element tends to be smaller among the Am stars than among the HgMn stars. Star-to-star differences are superimposed upon abundance trends.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity