Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3725384
Reference Type
Journal Article
Subtype
Review
Title
Engineering disulfide bonds within an antibody
Author(s)
Hagihara, Y; Saerens, D
Year
2014
Is Peer Reviewed?
1
Journal
Biochimica et Biophysica Acta
ISSN:
0006-3002
EISSN:
1878-2434
Volume
1844
Issue
11
Page Numbers
2016-2023
Language
English
PMID
25038323
DOI
10.1016/j.bbapap.2014.07.005
Web of Science Id
WOS:000343624200014
Abstract
Antibodies have evolved to function in oxidative, extracellular environments. A pair of cysteines in close proximity will oxidatively react to form a disulfide bond that fixes and stabilizes the tertiary structure of a protein. Immunoglobulin G (IgG) includes several disulfide bonds, and the patterns of inter-chain disulfide bonds characterize different IgG sub-classes. Moreover, the Ig-fold domains are characterized by a buried intra-domain disulfide bond, which is important for its structural stability. However, the intra-domain disulfide bond can be replaced without crucial effects on the structure and function, if the domain structure is intrinsically stable or has been stabilized by protein engineering. In previous studies, disulfide bonds were removed by amino-acid substitution indicating that Val and/or Ala (i.e. Ala-Ala, Ala-Val, Val-Ala, and Val-Ala) pairs were preferred for cysteine replacement in the Ig-fold domain. As such, these mutations may be useful for the intracellular use of antibodies. Recently, additional intra-domain disulfide bonds have been shown to stabilize Ig-fold domains and whole IgGs. In heavy chain variable or light chain variable domains, the introduction of additional disulfide bonds into the framework region did not reduce antigen-binding affinity, suggesting that generating disulfide bonds may be a method for stabilizing IgG and antibody fragments, such as the antigen-binding fragment, and single-chain and single-domain antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity